BPS - 5th Ed. Chapter 241 One-Way Analysis of Variance: Comparing Several Means.

Slides:



Advertisements
Similar presentations
BPS - 5th Ed. Chapter 181 Two-Sample Problems. BPS - 5th Ed. Chapter 182 Two-Sample Problems u The goal of inference is to compare the responses to two.
Advertisements

CHAPTER 25: One-Way Analysis of Variance Comparing Several Means
CHAPTER 25: One-Way Analysis of Variance: Comparing Several Means ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner.
The Analysis of Variance
ANOVA: Analysis of Variation
Copyright ©2006 Brooks/Cole, a division of Thomson Learning, Inc. Analysis of Variance Chapter 16.
© 2010 Pearson Prentice Hall. All rights reserved Single Factor ANOVA.
Copyright ©2011 Brooks/Cole, Cengage Learning Analysis of Variance Chapter 16 1.
Inference for distributions: - Comparing two means IPS chapter 7.2 © 2006 W.H. Freeman and Company.
Statistics Are Fun! Analysis of Variance
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide Are the Means of Several Groups Equal? Ho:Ha: Consider the following.
Chapter 2 Simple Comparative Experiments
BPS - 5th Ed. Chapter 171 Inference about a Population Mean.
Chapter 11: Inference for Distributions
Inferences About Process Quality
Two-sample problems for population means BPS chapter 19 © 2006 W.H. Freeman and Company.
CHAPTER 19: Two-Sample Problems
1 Chapter 20 Two Categorical Variables: The Chi-Square Test.
Chapter 12: Analysis of Variance
Copyright © 2009 Pearson Education, Inc. Chapter 28 Analysis of Variance.
F-Test ( ANOVA ) & Two-Way ANOVA
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 14 Analysis.
+ DO NOW What conditions do you need to check before constructing a confidence interval for the population proportion? (hint: there are three)
Ch 11 – Inference for Distributions YMS Inference for the Mean of a Population.
12-1 Chapter Twelve McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Inference for distributions: - Comparing two means IPS chapter 7.2 © 2006 W.H. Freeman and Company.
CHAPTER 18: Inference about a Population Mean
 The idea of ANOVA  Comparing several means  The problem of multiple comparisons  The ANOVA F test 1.
1 Happiness comes not from material wealth but less desire.
Lecture Presentation Slides SEVENTH EDITION STATISTICS Moore / McCabe / Craig Introduction to the Practice of Chapter 12 One-Way Analysis of Variance.
One-way ANOVA: - Inference for one-way ANOVA IPS chapter 12.1 © 2006 W.H. Freeman and Company.
Copyright © 2004 Pearson Education, Inc.
Two sample problems:  compare the responses in two groups  each group is a sample from a distinct population  responses in each group are independent.
Chapter 19 Analysis of Variance (ANOVA). ANOVA How to test a null hypothesis that the means of more than two populations are equal. H 0 :  1 =  2 =
Comparing Three or More Means ANOVA (One-Way Analysis of Variance)
BPS - 5th Ed. Chapter 221 Two Categorical Variables: The Chi-Square Test.
Analysis of Variance (One Factor). ANOVA Analysis of Variance Tests whether differences exist among population means categorized by only one factor or.
One-way ANOVA: - Comparing the means IPS chapter 12.2 © 2006 W.H. Freeman and Company.
BPS - 3rd Ed. Chapter 161 Inference about a Population Mean.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 14 Comparing Groups: Analysis of Variance Methods Section 14.1 One-Way ANOVA: Comparing.
While you wait: Enter the following in your calculator. Find the mean and sample variation of each group. Bluman, Chapter 121.
The Analysis of Variance. One-Way ANOVA  We use ANOVA when we want to look at statistical relationships (difference in means for example) between more.
Copyright © Cengage Learning. All rights reserved. 12 Analysis of Variance.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics S eventh Edition By Brase and Brase Prepared by: Lynn Smith.
CHAPTER 27: One-Way Analysis of Variance: Comparing Several Means
Objectives (IPS Chapter 12.1) Inference for one-way ANOVA  Comparing means  The two-sample t statistic  An overview of ANOVA  The ANOVA model  Testing.
CHAPTER 27: One-Way Analysis of Variance: Comparing Several Means
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
+ Unit 6: Comparing Two Populations or Groups Section 10.2 Comparing Two Means.
Inference for Distributions 7.2 Comparing Two Means © 2012 W.H. Freeman and Company.
While you wait: Enter the following in your calculator. Find the mean and sample variation of each group. Bluman, Chapter 121.
BPS - 5th Ed. Chapter 221 Two Categorical Variables: The Chi-Square Test.
Essential Statistics Chapter 171 Two-Sample Problems.
Inference for distributions: - Comparing two means.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Experimental Design and Analysis of Variance Chapter 11.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
 List the characteristics of the F distribution.  Conduct a test of hypothesis to determine whether the variances of two populations are equal.  Discuss.
Chapter 15 Analysis of Variance. The article “Could Mean Platelet Volume be a Predictive Marker for Acute Myocardial Infarction?” (Medical Science Monitor,
Class Six Turn In: Chapter 15: 30, 32, 38, 44, 48, 50 Chapter 17: 28, 38, 44 For Class Seven: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 Read.
Lecture notes 13: ANOVA (a.k.a. Analysis of Variance)
ANOVA: Analysis of Variation
ANOVA: Analysis of Variation
ANOVA: Analysis of Variation
ANOVA: Analysis of Variation
Comparing Three or More Means
Basic Practice of Statistics - 5th Edition
Basic Practice of Statistics - 3rd Edition Two-Sample Problems
Presentation transcript:

BPS - 5th Ed. Chapter 241 One-Way Analysis of Variance: Comparing Several Means

BPS - 5th Ed. Chapter 242 u Chapter 18: compared the means of two populations or the mean responses to two treatments in an experiment –two-sample t tests u This chapter: compare any number of means –Analysis of Variance v Remember: we are comparing means even though the procedure is Analysis of Variance Comparing Means

BPS - 5th Ed. Chapter 243 Case Study Do SUVs and trucks have lower gas mileage than midsize cars? Gas Mileage for Classes of Vehicles Data from the Environmental Protection Agency’s Model Year 2003 Fuel Economy Guide,

BPS - 5th Ed. Chapter 244 Case Study Data collection u Response variable: gas mileage (mpg) u Groups: vehicle classification –31 midsize cars –31 SUVs –14 standard-size pickup trucks Gas Mileage for Classes of Vehicles

BPS - 5th Ed. Chapter 245 Gas Mileage for Classes of Vehicles Case Study Data

BPS - 5th Ed. Chapter 246 Gas Mileage for Classes of Vehicles Means ( s): Midsize: SUV: Pickup: Case Study Data

BPS - 5th Ed. Chapter 247 Data analysis u Mean gas mileage for SUVs and pickups appears less than for midsize cars u Are these differences statistically significant? Gas Mileage for Classes of Vehicles Case Study Means ( s): Midsize: SUV: Pickup:21.286

BPS - 5th Ed. Chapter 248 Null hypothesis: The true means (for gas mileage) are the same for all groups (the three vehicle classifications) For example, could look at separate t tests to compare each pair of means to see if they are different: vs , vs , & vs H 0 : μ 1 = μ 2 H 0 : μ 1 = μ 3 H 0 : μ 2 = μ 3 Problem of multiple comparisons! Case Study Gas Mileage for Classes of Vehicles Data analysis Means ( s): Midsize: SUV: Pickup:21.286

BPS - 5th Ed. Chapter 249 u Problem of how to do many comparisons at the same time with some overall measure of confidence in all the conclusions u Two steps: –overall test to test for any differences –follow-up analysis to decide which groups differ and how large the differences are u Follow-up analyses can be quite complex; we will look at only the overall test for a difference in several means, and examine the data to make follow-up conclusions Multiple Comparisons

BPS - 5th Ed. Chapter 2410 u H 0 : μ 1 = μ 2 = μ 3 u H a : not all of the means are the same u To test H 0, compare how much variation exists among the sample means (how much the s differ) with how much variation exists within the samples from each group –is called the analysis of variance F test –test statistic is an F statistic v use F distribution (F table) to find P-value –analysis of variance is abbreviated ANOVA Analysis of Variance F Test

BPS - 5th Ed. Chapter 2411 Using Technology Gas Mileage for Classes of Vehicles Case Study Follow-up analysis P-value<.05 significant differences

BPS - 5th Ed. Chapter 2412 Case Study Gas Mileage for Classes of Vehicles Data analysis u F = u P-value = (rounded) (is <0.001) –there is significant evidence that the three types of vehicle do not all have the same gas mileage –from the confidence intervals (and looking at the original data), we see that SUVs and pickups have similar fuel economy and both are distinctly poorer than midsize cars

BPS - 5th Ed. Chapter 2413 u ANOVA tests whether several populations have the same mean by comparing how much variation exists among the sample means (how much the s differ) with how much variation exists within the samples from each group –the decision is not based only on how far apart the sample means are, but instead on how far apart they are relative to the variability of the individual observations within each group ANOVA Idea

BPS - 5th Ed. Chapter 2414 ANOVA Idea u Sample means for the three samples are the same for each set (a) and (b) of boxplots (shown by the center of the boxplots) –variation among sample means for (a) is identical to (b) u Less spread in the boxplots for (b) –variation among the individuals within the three samples is much less for (b)

BPS - 5th Ed. Chapter 2415 ANOVA Idea u CONCLUSION: the samples in (b) contain a larger amount of variation among the sample means relative to the amount of variation within the samples, so ANOVA will find more significant differences among the means in (b) –assuming equal sample sizes here for (a) and (b) –larger samples will find more significant differences

BPS - 5th Ed. Chapter 2416 Gas Mileage for Classes of Vehicles Case Study Variation among sample means (how much the s differ from each other)

BPS - 5th Ed. Chapter 2417 Gas Mileage for Classes of Vehicles Case Study Variation within the individual samples

BPS - 5th Ed. Chapter 2418 u To determine statistical significance, we need a test statistic that we can calculate –ANOVA F Statistic: –must be zero or positive v only zero when all sample means are identical v gets larger as means move further apart –large values of F are evidence against H 0 : equal means –the F test is upper one-sided ANOVA F Statistic

BPS - 5th Ed. Chapter 2419 ANOVA F Test u Calculate value of F statistic –by hand (cumbersome) –using technology (computer software, etc.) u Find P-value in order to reject or fail to reject H 0 –use F table (not provided in this book) –from computer output u If significant relationship exists (small P-value): –follow-up analysis v observe differences in sample means in original data v formal multiple comparison procedures (not covered here)

BPS - 5th Ed. Chapter 2420  F test for comparing I populations, with an SRS of size n i from the i th population (thus giving N = n 1 +n 2 +···+n I total observations) uses critical values from an F distribution with the following numerator and denominator degrees of freedom: –numerator df = I  1 –denominator df = N  I u P-value is the area to the right of F under the density curve of the F distribution ANOVA F Test

BPS - 5th Ed. Chapter 2421 Using Technology Gas Mileage for Classes of Vehicles Case Study

BPS - 5th Ed. Chapter 2422 Case Study F = I = 3 classes of vehicle n 1 = 31 midsize, n 2 = 31 SUVs, n 3 = 14 trucks N = = 76 df num = ( I  1) = (3  1) = 2 df den = (N  I ) = (76  3) = 73 P-value from technology output is This probability is not 0, but is very close to 0 and is smaller than 0.001, the smallest value the technology can record. ** P-value <.05, so we conclude significant differences ** Gas Mileage for Classes of Vehicles

BPS - 5th Ed. Chapter 2423 u Conditions required for using ANOVA F test to compare population means 1)have I independent SRSs, one from each population. 2)the i th population has a Normal distribution with unknown mean µ i (means may be different). 3)all of the populations have the same standard deviation , whose value is unknown. ANOVA Model, Assumptions

BPS - 5th Ed. Chapter 2424 u ANOVA F test is not very sensitive to lack of Normality (is robust) –what matters is Normality of the sample means –ANOVA becomes safer as the sample sizes get larger, due to the Central Limit Theorem –if there are no outliers and the distributions are roughly symmetric, can safely use ANOVA for sample sizes as small as 4 or 5 Robustness

BPS - 5th Ed. Chapter 2425 u ANOVA F test is not too sensitive to violations of the assumption of equal standard deviations –especially when all samples have the same or similar sizes and no sample is very small –statistical tests for equal standard deviations are very sensitive to lack of Normality (not practical) –check that sample standard deviations are similar to each other (next slide) Robustness

BPS - 5th Ed. Chapter 2426 u The results of ANOVA F tests are approximately correct when the largest sample standard deviation (s) is no more than twice as large as the smallest sample standard deviation Checking Standard Deviations

BPS - 5th Ed. Chapter 2427 Gas Mileage for Classes of Vehicles Case Study s 1 = s 2 = s 3 =  safe to use ANOVA F test

BPS - 5th Ed. Chapter 2428 u ANOVA F statistic: –the measures of variation in the numerator and denominator are mean squares v general form of a sample variance v ordinary s 2 is “an average (or mean) of the squared deviations of observations from their mean” ANOVA Details

BPS - 5th Ed. Chapter 2429 u Numerator: Mean Square for Groups (MSG) –an average of the I squared deviations of the means of the samples from the overall mean v n i is the number of observations in the i th group v ANOVA Details

BPS - 5th Ed. Chapter 2430 u Denominator: Mean Square for Error (MSE) –an average of the individual sample variances (s i 2 ) within each of the I groups v MSE is also called the pooled sample variance, written as s p 2 (s p is the pooled standard deviation) v s p 2 estimates the common variance  2 ANOVA Details

BPS - 5th Ed. Chapter 2431 –the numerators of the mean squares are called the sums of squares (SSG and SSE) –the denominators of the mean squares are the two degrees of freedom for the F test, ( I  1) and (N  I ) –usually results of ANOVA are presented in an ANOVA table, which gives the source of variation, df, SS, MS, and F statistic v ANOVA F statistic: ANOVA Details

BPS - 5th Ed. Chapter 2432 Using Technology Gas Mileage for Classes of Vehicles Case Study For detailed calculations, see Examples 24.7 and 24.8 on pages of the textbook.

BPS - 5th Ed. Chapter 2433 Summary

BPS - 5th Ed. Chapter 2434 u Confidence interval for the mean  i of any group: –t* is the critical value from the t distribution with N  I degrees of freedom (because s p has N  I degrees of freedom) –s p (pooled standard deviation) is used to estimate  because it is better than any individual s i ANOVA Confidence Intervals

BPS - 5th Ed. Chapter 2435 Using Technology Gas Mileage for Classes of Vehicles Case Study