Preparation of Specimens for Metallographic Examination

Slides:



Advertisements
Similar presentations
Heat Treatment of Steel
Advertisements

GRINDING AND OTHER ABRASIVE PROCESSES Chapter 25
METALS Learning Objectives: What is METAL?
UNIT 3: Metal Alloys Unit 3 Copyright © 2012 MDIS. All rights reserved. 1 Manufacturing Engineering.
5/3/ Exp.4: Preparation of Specimens.  To prepare the specimens surfaces to be examined by the microscope.  To learn and to gain experience in.
INTRODUCTION TO METALS
METALS What is METAL? Different Types of Metals – Ferrous, Non-Ferrous, Alloys Main focus of Ferrous Metals Properties of Metals Characteristics of Ferrous.
© 2012 Su-Jin Kim GNU Grinding, EDM Manufacturing Processes Grinding( 연삭 ), EDM Grinding( 연삭 ), EDM( 방전 ) Associate Professor Su-Jin KimSu-Jin Kim School.
Manufacturing Processes lab I Cutting tools
CHAPTER (1) General Introduction Dr. Ahmed Abou El-Wafa.
Cutting Tool Materials Eng R. L. Nkumbwa Copperbelt University 2010
Introduction The properties and behavior of metals (and alloys) depend on their: Structure Processing history and Composition Engr 241.
Heat Treatment.
Abrasives. Early kinds of abrasive Sand paper was first mass-produced in 1833.
Abrasives. Today’s common types of sand paper Garnet: common for wood working. Aluminum oxide: for metal. Silicon carbide: wet or dry applications Garnet.
Meteorite 101 Cutting, Surface Preparation, Etching, and Preserving Iron Meteorites Prepared for AOAS By Leonard Lynch.
Metals. In the Construction Industry we use metals in the many areas such as; Structural Claddings Architectural Systems Building Service.
Cutting Tool Materials
Selection Criteria Properties Availability Cost Manufacturability
PROPERTIES OF MATTER 12.1.
Selection Criteria Properties Availability Cost Manufacturability
What determines a materials physical, chemical and mechanical properties?
Polycrystalline Cutting Tools
Metallographic Sample Preparation and Examination Prepared by: Mahmoud R.M.Abusrea Teaching Assistant, MDP Dept. October,2008.
WHAT ARE METALS Learning Objectives: Defining METAL?
Annealing, Normalizing, and Quenching of Metals
Metallic Materials.  Types of metallic Materials * Aluminum * Brass * Bronze * Stainless Steel * Carbon Steel * Copper.
Universal College Of Engineering & Technology
Equal Channel Angular Pressing of High Purity Aluminum Julio A. Nunez Chris Hovanec Dr. Surya R. Kalidindi Dr. Roger D. Doherty Mechanics of Microstructures.
Metals GROUP 2.
Grinding is a process which utilizes the use of abrasive particles bounded together to produce superior surface finishing An abrasive: is a small, nonmetallic.
IMPERFECTIONS IN SOLIDS
Chapter 2 Mineral. Lesson 1 Minerals Mineral characteristics: A substance Forms in mature Forms in mature Is a solid Is a solid Has a definite chemical.
12.1 Properties of Solids Different kinds of matter have different characteristics. Characteristics that can you observe directly are called physical.
Phase Diagrams melting / production process / alloying (strength, Tm...) heat treatment microstructure material properties system (e.g. Cu-Ni) components.
© 2009 Al-Abdallat Properties of Eng. Material 1 (3) Interfacial defects Interfacial defects: Types: External surfaces, Grain boundaries, Twin boundaries.
IMS ENGINEERING COLLEGE
MANUFACTURING SCIENCE - II
IN THE NAME OF ALLAH, THE MOST MERCIFUL, THE MOST BENEFICIENT. 1.
MATERIAL SCIENCE & METALLURGY PREPARED BY- JAY PUJARA Assist. Prof. IN MECHANICAL DEPARTMENT GEC, RAJKOT.
METALS TEMA 5. METALS CAN BE USED IN INDUSTRIES…
EBB440 Applied Metallurgy Abrasive Machining.
Dr. Owen Clarkin School of Mechanical & Manufacturing Engineering Summary of Material Science Chapter 1: Science of Materials Chapter 2: Properties of.
ASSIT PROF. IN MECHANICAL DEPARTMENT
Abrasive Machining General Manufacturing Processes Engr Instructor - Sam Chiappone.
PREPARED BY: AKASH CHAUDHARY III YEAR, MECHANICAL ENGINEERING ROLL NO:
METALLOGRAPHIC EXAMINATION OF METALS AND ALLOYS
Sand Paper Notes This powerpoint is for the students, the information is in note form and not in complete details. Please review all the slide notes for.
Ceramic and Polymer Materials
GRINDING WHEEL SPECIFICATONS
Exp.1: Preparation of Specimens for Metallographic Examination
Manufacturing Process 1 Abrasive Machining Prepared By : Joshi Shubham H. ( ) GUIDED BY: PROF V N BADRAKIA SIR Presentation slide for courses,
Grinding Grinding is a process which utilizes the use of abrasive particles bounded together to produce superior surface finishing An abrasive: is a small,
Heat Treatment of Steel
Level 1 – Flat [Ground].
Table (1) 6066,6063 ,1050 component elements
Visit for more Learning Resources
Unit 3 Lesson 1 Minerals.
Abrasives.
Preparation of Specimens for Metallographic Examination
Various Instruments for the Study of Microstructure
Material Analysis of Thermo-Mechanically Treated Steel and Re-bar
MME 294 Experiment 1 Metallography Sessional
Determination of Grain Size
Optical Metallography. Metallography is the study of the physical structure and components of metals, by using microscopy. Introduction.
2 different distributions of Phases
12.1 Properties of Solids Different kinds of matter have different characteristics. Characteristics that can you observe directly are called physical.
Lecture – 07: Surface Finish and Integrity
Presentation transcript:

Preparation of Specimens for Metallographic Examination

Metallography

INDEX Objectives Introduction Metallography Questions

Objective To prepare the specimens surfaces to be examined for their microstructure study by the microscope . To learn and to gain experience in the preparation of metallographic specimens.

Introduction Metallography is basically the study of the structures and constitution of metals and alloys, using metallurgical microscopes and magnifications, so that the physical and mechanical properties of an alloy can be related to its observed microstructure. It provides information about the specimen under investigation, including the size and shape of the grains (crystallites), the presence of micro defects (such as segregation, hair cracks, and nonmetallic inclusions), and the nature and distribution of secondary phases.

Metallography Cutting Grounding – emery paper (240, 300, 400, 600) Polishing (0.5, 0.1, 0.05μ) Etching –Nitol/ Kellers Solution Microscopy

Grounding grinding is a subset of cutting, as grinding is a true metal cutting process. Abrasive :The use of Premium SiC abrasive paper is the most efficient and practical technique for grinding metallic metallographic specimens. Although many qualities of silicon carbide are readily available, only the premium grade SiC powder provides the most consistent results and highest grinding rates. Each grain of abrasive functions as a microscopic single- point cutting edge and shears a tiny chip that is analogous to what would conventionally be called a "cut" chip (turning, milling, drilling, tapping, etc.)

Grinding Soft non-ferrous metals Soft non-ferrous metals - Initial grinding is recommended with 320 grit SiC abrasive paper followed by 320 400, 600 and , 800 grit SiC paper. because These materials are relatively soft they do not easily break down the SiC paper. The initial grinding with 320 grit is generally sufficient for minimizing initial deformation and yet maintaining adequate removal rates. For extremely soft materials such as tin, lead and zinc it is also recommended that the abrasive paper be lightly coated with a paraffin wax. The wax reduces the tendency of the SiC abrasive to embed into the soft specimen.

Grinding Ferrous metals Ferrous metals - are relatively easy to grind with the depth of deformation being a major consideration. 120 grit SiC abrasives provide a good initial start with subsequent use of 240 or 320, 400, 600 and 800 grit SiC. Super alloys - are generally of moderate hardness but have extremely stable elevated temperature characteristics and corrosion resistance. the procedures for preparing super alloys is very similar to that for most non-ferrous metals.

Sample Preparation The purpose of this practice is to understand how to prepare and interpret metallographic samples systematically. Gather information about chemical composition, heat treatment, processing, phase diagram. Cut representative sample. Mount sample, grind and polish. Examine un etched sample. Etch lightly and examine again. Etch further if necessary. Compare with microstructure expected from equilibrium phase diagram

Spheroidal Graphite Cast Iron

Abrasive Material Materials used for the abrading particles are: garnet: commonly used in woodworking emery: commonly used to abrade or polish metal aluminium oxide: perhaps most common in widest variety of grits; can be used on metal (i.e. body shops) or wood silicon carbide: available in very coarse grits all the way through to micro-grits, common in wet applications alumina-zirconia: (an aluminium oxide–zirconium oxide alloy), used for machine grinding applications chromium oxide: used in extremely fine micron grit (micrometre level) papers ceramic aluminum oxide: used in high pressure applications, used in both coated abrasives, as well as in bonded abrasives.

Polishing Polishing is the process of creating a smooth and shiny surface by rubbing it or using a chemical action, leaving a surface with a significant reflection Aluminum Oxide(0.5, 0.1, 0.05μ)

PROCESS The specimen must 1. Be free from scratches, stains and others imperfections which tend to mark the surface. 2. Reveal no evidence of chipping due to brittle inter metallic compounds and phases. 3. Be free from all traces of disturbed metal. 4. The specimen has to be grounded with the help of abrasive papers. 5. Polishing enhances the surface and makes it suitable to observe its grain structure under Microscope.

Grain The micro structure of many metallic or ceramic materials consists of many grains. A grain is portion of the materials within which the arrangement of the atoms is nearly identical but the orientation or crystal structure of atoms are different. Microstructure of Aluminum

and titanium dioxide (Al2O3 . TiO2) A Grain Boundary The surface that separates the individual grains is a narrow zoon in which the atoms are properly spaced. One method of controlling the properties of a material is by controlling the grain size. aluminum oxide and titanium dioxide (Al2O3 . TiO2)

Surface Defects Surface defects are the boundaries, or plans, that separate a material into regions. Each region may have the same crystal structure but different orientation

Industrial etching The surface is than exposed to chemical attack or ETCHING, with grain boundaries being attacked more aggressively than reminder of the grain to reveal the microstructure. Light from an optical microscope is reflected or scattered from the sample surface depending how the surface is etched

Etching: Few seconds (15 Sec) Sample material Etchant Composition Remarks Carbon steel (usually 2%) (nitric acid) HNO3 1-5 ml Ethyl alcohol 100ml Few seconds (15 Sec) Picric Acid Picric acid 4g Aluminum Hydrofluoric acid HF (conc.) 0.5ml H2O 99.5ml Swab for 15 sec.

Surface Finish and Surface Roughness (Original Magnification 50x)

REFERENCES http://sembach.com/uploads/images/brevier/bild18.gif http://www.springerimages.com/img/Images/Springer/JOU=11661/VO L=2011.42/ISU=9/ART=688/MediaObjects/MEDIUM_11661_2011_68 8_Fig26_HTML.jpg http://www.springerimages.com/img/Images/Springer/JOU=11661/VO L=2011.42/ISU=11/ART=749/MediaObjects/MEDIUM_11661_2011_74 9_Fig1_HTML.jpg http://www.sfsa.org/tutorials/uplock/images/Grains.Jpg http://ars.els-cdn.com/content/image/1-s2.0-S0043164804002364- gr11.jpg THANK YOU