Numeriska beräkningar i Naturvetenskap och Teknik 1.Solving equations.

Slides:



Advertisements
Similar presentations
Polynomial Inequalities in One Variable
Advertisements

Today’s topic: Some Celestial Mechanics F Numeriska beräkningar i Naturvetenskap och Teknik.
The topic: Least squares method Numeriska beräkningar i Naturvetenskap och Teknik.
Numerical Methods: Finding Roots Department of Mathematics University of Leicester.
Copyright © Cengage Learning. All rights reserved.
Numerical Computation Lecture 4: Root Finding Methods - II United International College.
Lecture 5 Newton-Raphson Method
Numerical Solution of Nonlinear Equations
Section Differentials Tangent Line Approximations A tangent line approximation is a process that involves using the tangent line to approximate a.
Mathematics1 Mathematics 1 Applied Informatics Štefan BEREŽNÝ.
Newton’s Method finds Zeros Efficiently finds Zeros of an equation: –Solves f(x)=0 Why do we care?
Numeriska beräkningar i Naturvetenskap och Teknik Today’s topic: Some Celestial Mechanics F.
Numeriska beräkningar i Naturvetenskap och Teknik 1. Numerical differentiation and quadrature Discrete differentiation and integration Trapezoidal and.
Numeriska beräkningar i Naturvetenskap och Teknik Today’s topic: Approximations Least square method Interpolations Fit of polynomials Splines.
Open Methods (Part 1) Fixed Point Iteration & Newton-Raphson Methods
MATH 577http://amadeus.math.iit.edu/~fass1 3.2 The Secant Method Recall Newton’s method Main drawbacks: requires coding of the derivative requires evaluation.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 9 Roots of Equations Open Methods.
Notes, part 5. L’Hospital Another useful technique for computing limits is L'Hospital's rule: Basic version: If, then provided the latter exists. This.
Lectures on Numerical Methods 1 Numerical Methods Charudatt Kadolkar Copyright 2000 © Charudatt Kadolkar.
NUMERICAL METHODS WITH C++ PROGRAMMING
Notes, part 4 Arclength, sequences, and improper integrals.
Solving Non-Linear Equations (Root Finding)
Lecture 6 Numerical Analysis. Solution of Non-Linear Equations Chapter 2.
Solving equations numerically The sign - change rule If the function f(x) is continuous for an interval a  x  b of its domain, if f(a) and f(b) have.
Chapter 3 Roots of Equations. Objectives Understanding what roots problems are and where they occur in engineering and science Knowing how to determine.
Solving Nonlinear Inequalities Section Solution to Inequality Equation One solution Inequality Infinite Solutions.
Problem of the Day No calculator! What is the instantaneous rate of change at x = 2 of f(x) = x2 - 2 ? x - 1 A) -2 C) 1/2 E) 6 B) 1/6 D) 2.
Numerical Methods.
CHAPTER 3 NUMERICAL METHODS
Newton’s Method, Root Finding with MATLAB and Excel
ROOTS OF EQUATIONS. Bracketing Methods The Bisection Method The False-Position Method Open Methods Simple Fixed-Point Iteration The Secant Method.
Solving Non-Linear Equations (Root Finding)
Applications of Loops: The power of MATLAB Mathematics + Coding
Numerical Methods Solution of Equation.
4 Numerical Methods Root Finding Secant Method Modified Secant
4.8 Newton’s Method Mon Nov 9 Do Now Find the equation of a tangent line to f(x) = x^5 – x – 1 at x = 1.
Linearization, Newton’s Method
SOLVING NONLINEAR EQUATIONS. SECANT METHOD MATH-415 Numerical Analysis 1.
Yasser F. O. Mohammad Assiut University Egypt. Previously in NM Bracketing Methods Bisection False Position Fixed Point Iteration Local Convergence Methods.
Section )by graphing (using the calculator to identify the roots (x-intercepts)) 2)by factoring 3)by “completing the square” 4)by Quadratic Formula:
Tangent Line Approximations A tangent line approximation is a process that involves using the tangent line to approximate a value. Newton used this method.
Lecture 4 Numerical Analysis. Solution of Non-Linear Equations Chapter 2.
 The equation with one variable. At P(atm) equals 0.5 atm, What is T ? ? ?
1 4.8 – Newton’s Method. 2 The Situation Let’s find the x-intercept of function graphed using derivatives and tangent lines. |x1|x1 |x2|x2 |x3|x3 Continuing,
CSE 330: Numerical Methods. Introduction The bisection and false position method require bracketing of the root by two guesses Such methods are called.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 2 / Chapter 5.
Chapter 5 Numerical Root Findings
CHAPTER 3 NUMERICAL METHODS
Numerical Methods and Analysis
Secant Method.
4.5: Linear Approximations, Differentials and Newton’s Method
Newton’s Method for Systems of Non Linear Equations
CS B553: Algorithms for Optimization and Learning
Secant Method – Derivation
Computers in Civil Engineering 53:081 Spring 2003
SOLUTION OF NONLINEAR EQUATIONS
Section 2.7.
Section 4.8: Newton’s Method
A step-by-step process of trial and improvement
ROOTS OF EQUATIONS.
3.8 Newton’s Method How do you find a root of the following function without a graphing calculator? This is what Newton did.
Newton’s Method and Its Extensions
3.8: Newton’s Method Greg Kelly, Hanford High School, Richland, Washington.
3.8: Newton’s Method Greg Kelly, Hanford High School, Richland, Washington.
Assignment 1: due 1/16/19 Estimate all of the zero of x3-x2-2x+1 graphically. Write a MatLab code for Newton’s method. Use your code to refine the graphical.
Sec:5.2 The Bisection Method.
Some Comments on Root finding
Copyright © Cengage Learning. All rights reserved.
MATH 1910 Chapter 3 Section 8 Newton’s Method.
Presentation transcript:

Numeriska beräkningar i Naturvetenskap och Teknik 1.Solving equations

Numeriska beräkningar i Naturvetenskap och Teknik Discretization

Numeriska beräkningar i Naturvetenskap och Teknik Error propagation

Numeriska beräkningar i Naturvetenskap och Teknik Discretization and error propagation

Numeriska beräkningar i Naturvetenskap och Teknik An example using graphs

Numeriska beräkningar i Naturvetenskap och Teknik A numerical exemple >> bisection method Sign change Half of the interval... again... and again...

Numeriska beräkningar i Naturvetenskap och Teknik Bisection

Numeriska beräkningar i Naturvetenskap och Teknik Bisection method A clear limitation of the method is that the new approximation does not take into account the value of the function for the latest x-value it was calculated at. compare which gives So, we have stepped two times but are hardly any closer to the solution than we were two steps earlier…(the sign has changed though…) How can we use the knowledge we have of the value of the function in order to guess a new better value?

Numeriska beräkningar i Naturvetenskap och Teknik Secant method Sekantens ekvation Iteration formula! Root x 2, approximation

Numeriska beräkningar i Naturvetenskap och Teknik The secant method Code example for the secant method in the diff. equation section

Numeriska beräkningar i Naturvetenskap och Teknik Newton-Raphson’s method Let the step between x n and x n-1 tend to zero... or the eq. of the tangent…

Numeriska beräkningar i Naturvetenskap och Teknik Iteration principle 1-point method 2-point method

Numeriska beräkningar i Naturvetenskap och Teknik Our exemple once more: Solve for the root: i.e.is a possibility. Are there others? yes, infinitely many!

Numeriska beräkningar i Naturvetenskap och Teknik

The mean value theorem: but i.e. or

Numeriska beräkningar i Naturvetenskap och Teknik The relative error between two iterations If G’(ξ) is less than 1 the iteration will converge If x n och x n+1 are close to a then ξ is also an approximation for a, i.e. if G’(ξ)<1 around the root a, the iteration will converge. The convergence is quicker the smaler G’ is in the surrounding of a How can this be used in order to optimize how we write the iteration formula?

Numeriska beräkningar i Naturvetenskap och Teknik Let us rewrite f(x)=0 that is Assume that the start value is a good approximation for the root: which leads to

Numeriska beräkningar i Naturvetenskap och Teknik Newton Raphson’s modified method: Our exemples Applying Newton Raphson’s modified method

Numeriska beräkningar i Naturvetenskap och Teknik

Kodexempel, Newton Raphsons modifierade metod etc.