S. Belogurov, ITEP/INR Moscow GERDA experiment 21.10.04 New experiment for the search of neutrinoless double beta decay of 76 Ge at LNGS GERmanium Detector.

Slides:



Advertisements
Similar presentations
December 4, 2007Béla Majorovits,MPI für Physik, München Excellence Cluster Universe – Science Week 2007 The Germanium Detector Array (GERDA) for the search.
Advertisements

GERDA meeting8-11 November, 2005 Tuebingen Alternative option. Stainless steel cryostat: LN and LAr background I.R. Barabanov 1, L.B. Bezrukov 1, V.I.
Dubna, June, th session of the JINR Scientific Council Nuclear Physics PAC.
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
LNGS, ITALY Stefan Schoenert, MPIK Heidelberg
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
LNGS (GERmanium Detector Assembly Stefan Schönert MPIK Heidelberg NOW 2004, Sept. 12, 2004.
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
Neutrinoless Double Beta Decay – Status of GERDA
Summary TG-10 MC & Background
September 14, 2007Hardy Simgen, TAUP 2007 / Sendai1 Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
M. Di Marco, P. Peiffer, S. Schönert
Neutrinoless Double Beta Decay – Status of GERDA
Results from M. Di Marco, P. Peiffer, S. Schönert Thanks to Davide Franco and Marik Barnabe Heider Gerda collaboration meeting, Tübingen 9th-11th.
WP2 Background simulations Outline Execution plan for the third year Progress of the work Activities and news.
GERDA: GERmanium Detector Array
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
GERDA: the Germanium Detector Array at LNGS IDEA meeting, April 14/15, Orsay Stefan Schoenert, MPIK Heidelberg.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
LENS-CAL I. Barabanov, V. Gurentsov, V. Kornoukhov Institute for Nuclear Research, Moscow and R. S. Raghavan, Virginia Tech LONU-LENS Blacksburg, Oct 15,
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
9-June-2003NDM2003 M. Nomachi M. Nomachi OSAKA University and MOON collaboration MOON (Mo Observatory Of Neutrinos) for double beta decay Photo by
Context: astroparticle physics, non-accelerator physics, low energy physics, natural sources physics, let’s-understand-the-Universe physics mainly looking.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
Operation of bare Ge-diodes in LN/LAr 1 st IDEA meeting Como, April 8 (2004) Stefan Schoenert.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
Planned Transregional Collaborative Research Center TR27: Neutrinos and Beyond Project A4: Development of segmented germanium detectors for the investigation.
M. Wojcik Instytute of Physics, Jagiellonian University
ILIASN4 Cascina, November 3rd, 2005Dominique Lalanne.
May 6, 2006Henderson Dusel Capstone Meeting Low Background Counting A Facility Wish List for the New Underground Laboratory F. Calaprice.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
Detector Monte-Carlo ● Goal: Develop software tools to: – Model detector performance – Study background issues – Calculate event rates – Determine feasibility.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
LAL, Orsay IDEA meeting Validation of excitation functions of 60 Co and 68 Ge production on germanium isotopes V.F. Batyaev, I.V. Kirpichnikov,
Agenda A. Caldwell overview 15' S. Belogurov Shielding against cosmogenic activation: current results and prospects15' V. Kornoukhov Enrichment & purification.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
1 GEMMA: experimental searches for neutrino magnetic moment JINR: V. Brudanin, V. Egorov, D. Medvedev, M. Shirchenko, E. Shevchik, I. Zhitnikov, V. Belov.
The GERDA experiment L. Pandola INFN, Gran Sasso National Laboratory for the GERDA Collaboration WIN2009, Perugia, September 17 th 2009.
Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Cracow, Poland The GERDA Experiment at Gran.
Study of high energy cosmic rays by different components of back scattered radiation generated in the lunar regolith N. N. Kalmykov 1, A. A. Konstantinov.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
CUTAPP05 A. Caldwell/MPI.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Benjamin Spaun Whitworth College Advisors:
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Genova, July 18 th, 2005 Geant4 and the underground physics community.
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
M.Altmann, GERDA Status Report SNOLAB Workshop IV, Investigating Neutrinoless Double Beta Decay Status of the GERDA Experiment Michael Altmann.
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
+. G & M Experimental Search for Neutrinoless Double Beta Decay of 76 Ge (GERDA-MAJORANA) Participants from Dubna: V.Brudanin, M.V. Chirchenko I.Chirikov-Zorin,
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
MPI für Physik, Fachbeirat, Béla Majorovits The GERDA experiment Béla Majorovits.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
JINR group V. Brudanin, V. Egorov, K. Gusev, A. Klimenko, O. Kochetov, I. Nemchenok, V. Sandukovsky, A. Smolnikov, M.Shirchenko, D. Zinatulina Project.
Enter the DarkSide Stefano Davini University of Houston RICAP-13.
B. Majorovits (MPI für Physik) for the collaboration
Prompt Gamma Activation Analysis on 76Ge
Agenda A. Caldwell overview 15'
GERDA Collaboration Meeting,
Summary of TG2-Meeting New Detectors for GERDA Phase-II
H. Simgen, MPI for Nuclear Physics / Heidelberg
98 th session of the JINR Scientific Council
Presentation transcript:

S. Belogurov, ITEP/INR Moscow GERDA experiment New experiment for the search of neutrinoless double beta decay of 76 Ge at LNGS GERmanium Detector Array (GERDA)

S. Belogurov, ITEP/INR Moscow GERDA experiment Outline General DBD situation and motivation Technical details Expected sensitivity of the experiment

S. Belogurov, ITEP/INR Moscow GERDA experiment  :(A,Z)  (A,Z+2) + 2e - d d u u e-e- e-e- W-W- W-W- e e  L=2 Primary Objective:  Effective mass: m ee = |  i U ei ² m i | (decay generated by (V-A) cc-interaction via exchange of light Majorana neutrinos)  Majorana nature

S. Belogurov, ITEP/INR Moscow GERDA experiment

76 Ge results IGEX, HD-M bcg ~0.2 ev/kg/keV/y T 1/2 >2 ·10 25 y Klapdor’s claim T 1/2 ~1.2· y (big errors)

S. Belogurov, ITEP/INR Moscow GERDA experiment Previous large scale projects GENIUS – MAJORANA - GEM M = 1 (10?), 0.5, 1 ton (86% enriched 76 Ge) 0 -DBD sensitivity T 10y ~ 2, 0.4,1 ·10 28 y ~ 10 – 80 meV Assumed bkg: ~ 0.04, 0.4, 0.2 count/keV ton y ~ 0.04, 0.4, 0.2 count/keV ton y

S. Belogurov, ITEP/INR Moscow GERDA experiment Basic ideology of GERDA To collect most of the existing enriched detectors (11 kg from Hd-M, KI; 8kg IGEX, ITEP/INR) Background of existing detectors is mostly due to surface contaminations (contacts, housing)  repacking with minimum material around High Z materials to be put as far as possible from the diodes, the closest shield - high purity LN 2 or LAr Stepwise strategy

S. Belogurov, ITEP/INR Moscow GERDA experiment GERDA collaboration I. Abt j, M. Altmann j, A.M. Bakalyarov i, I. Barabanov g, C. Bauer c, M. Bauer l, E. Bellotti f, S. Belogurov g,h, S.T. Belyaev i, A. Bettini k, L. Bezrukov g, V. Brudanin b, C. Büttner j, V.P. Bolotsky h, A. Caldwell j, C. Cattadori a,f, M.V. Chirchenko i, O. Chkvorets c, H. Clement l, E. Demidova h, A. Di Vacri a, J. Eberth d, V. Egorov b, E. Farnea k, A. Gangapshev g, G.Y. Grigoriev i, V. Gurentsov g, K. Gusev b, W. Hampel c, G. Heusser c, W. Hofmann c, L.V. Inzhechik i, J. Jochum l, M. Junker a, S. Katulina b, J. Kiko c, I.V. Kirpichnikov h, A. Klimenko b,g, K.T. Knöpfle c, O. Kochetov b, V.N. Kornoukhov g,h, R. Kotthaus j, V. Kusminov g, M. Laubenstein a, V.I. Lebedev i, X. Liu j, H.-G. Moser j, I. Nemchenok b, L. Pandola a, P. Peiffer c, R.H. Richter j, K. Rottler l, C. Rossi Alvarez k, V. Sandukovsky b, S. Schönert c, S. Scholl l, J. Schreiner c, B. Schwingenheuer c, H. Simgen c, A. Smolnikov b,g, A.V. Tikhomirov i, C. Tomei a, C.A. Ur k, A.A. Vasenko h, S. Vasiliev b,g, D. Weißhaar d, M. Wojcik e, E. Yanovich g, J. Yurkowski b, S.V. Zhukov i, G. Zuzel c a INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy b Joint Institute for Nuclear Research, Dubna, Russia c Max-Planck-Institut für Kernphysik, Heidelberg, Germany d Institut für Kernphysik, Universität Köln, Germany e Jagiellonian University, Krakow, Poland f Università di Milano Bicocca e INFN Milano, Milano, Italy g Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia h Institute for Theoretical and Experimental Physics, Moscow, Russia i Russian Research Center Kurchatov Institute, Moscow, Russia j Max-Planck-Institut für Physik, München, Germany k Dipartimento di Fisica dell’Università di Padova e INFN Padova, Padova, Italy l Physikalisches Institut, Universität T¨ubingen, Germany

S. Belogurov, ITEP/INR Moscow GERDA experiment

Figure 26: Scintillator module using a WLS fiber light guide for readout as well as a set of black strips for equalizing light collection.

S. Belogurov, ITEP/INR Moscow GERDA experiment Fig. 1 presents dependence of background index as a function of diameter of the vessel: for single crystal and for 252 crystal assembly. In the case of 252 crystal assembly a mode of Ar active shielding was also calculated. Simulations of external gamma background

S. Belogurov, ITEP/INR Moscow GERDA experiment

Cosmogenic Co-60 inside diodes T 0 for cosmic ray exposure: completion of mono-zone refinement  Bq/kg per day exposure [Miley 92] Benchmark test: detector production with 7.4 days exposure assumption: 30 days  2.5 ·10 -3 / (keV·kg·y) Kurchatov enriched crystals: ~5·10 -3 / (keV·kg·y) in 2006 β 11 22 2+β2+β 1+1+ 2+β2+β Q ββ

S. Belogurov, ITEP/INR Moscow GERDA experiment Background summary Phase I: external ~ / (keV kg y) internal < / (keV kg y) Phase II: (With segmentation) (No segmentation) Units: / (keV kg y)

S. Belogurov, ITEP/INR Moscow GERDA experiment Relations with Majorana Coordination and sharing of simulations Coordination of R&D e.g. on segmentation Participation in meetings At the phase of kg experiment merging is possible

S. Belogurov, ITEP/INR Moscow GERDA experiment Procurement of enriched material Funding for ~30 kg of enriched Ge-76 secured Contract with ECP close to signing: –Basic contract: enrichment, underground storage, optional purification 2 kg pre-sample for quality control  28 kg Non-enriched sample (15 kg) for reference Special transport container designed to minimize activation Optional waste enrichment to Ge-74 for “zero” detector

S. Belogurov, ITEP/INR Moscow GERDA experiment From Majorana WP

S. Belogurov, ITEP/INR Moscow GERDA experiment Shielding against cosmogenic activation at transport

S. Belogurov, ITEP/INR Moscow GERDA experiment Shielding Spallation reactions are produced by nuclear active component of CR (mostly neutrons) Attenuation length for this component is 150 g/cm 2 for air Relevant cross sections behave like A 0.6 -A 0.8, e.g. for Fe – attenuation length is ~200 g/cm 2 Optimizing the shape of the shielding, taking into account angular distribution of nuclear active component may reduce flux times with mass of shielding ton, it is feasible for lend transport But, hadron cascade generation by muons in the shielding material is a limitation (no Pb hence) carefull investigation of this phenomenon is underway. Shielding efficiency of seems realistic anyway. Tests with Bi fission chamber may be usefull.

S. Belogurov, ITEP/INR Moscow GERDA experiment Dependence of the shielding mass on the material Let take for (effective)  A ~A 0.73 l~1/(  A n A )~1/  A ·A/  A 0.27 /  M~ l 3  A 0.81 /  2 PE7.5 Al1.98 Fe 0.41 Pb 0.59 Another argument – neutron production by muons

S. Belogurov, ITEP/INR Moscow GERDA experiment Neutron generation by muons (From M. Bauer)

S. Belogurov, ITEP/INR Moscow GERDA experiment Ionization loss, fluctuation of ionization loss and multiple Coulomb scattering of charged hadrons and nuclear fragments and 3-particle modes of meson decay. 6. Modeling of hA- и AA-interactions in exclusive approach (MSDM-generator) Transport of N, , K, N and arbitrary nuclei (A,Z) up to 1 TeV/u. 2. Extended target as a combination of bodies limited by second order.surfaces (CG-compatible) 3. Arbitrary chemical and isotope composition of materials in the target zones. 7. Memorizing of each hadron cascade tree during its simulation without loss of physical information. 8. Storing of sources of , e , e+ and of neutrons (E n <14.5 MeV) during simulation of the hadron cascade Neutron transport (E n <14.5 MeV) on the basis of the28-groups ABBN neutron data library. 10. Analog and weighted simulation modes, open architecture of the code Recent version of the SHIELD code (from N. Sobolevsky)

S. Belogurov, ITEP/INR Moscow GERDA experiment Fast, cascade stage of nuclear reaction: DCM (Dubna Cascade Model ) [1] Independent Quark-Gluon String Model (QGSM) [2,3] Coalescence model [1] Pre-equilibrium emission of nucleons and lightest nuclei [4] Equilibrium deexitation of residual nucleus: Fermi break up of light nuclei [5] Evaporation/Fission [5,6] Multifragmentation of higly excited nuclei (SMM) [7] 1.V.D.Toneev, K.K.Gudima, Nucl. Phys. A400 (1983) 173c. 2.N.S.Amelin, К.К.Gudima, V.D.Toneev. Yad.Fiz. 51 (1990) 1730 (in Russian). 3.N.S.Amelin, К.К.Gudima, S.Yu.Sivoklokov, V.D.Toneev. Yad.Fiz. 52 (1990) 272 (in Russian). 4.K.K.Gudima, S.G.Mashnik, V.D. Toneev, Nucl. Phys. A401 (1983) A.S.Botvina, A.S.Iljinov, I.N.Mishustin et al., Nucl. Phys. A475 (1987) G.D.Adeev, A.S.Botvina, A.S.Iljinov et al. Preprint INR, 816/93, Moscow, Botvina, A.S. Iljinov and I.N. Mishustin, Nucl.Phys. A507 (1990) 649. Cross sections of NA-,  A- and AA-interactions: V.S.Barashenkov, A.Polanski. Electronic Guide for Nuclear Cross Sections. JINR E2 ‑ 94 ‑ 417, Dubna, Cross sections of KA- и NA-interactions: B.S.Sychev et al. Report ISTC, Project 187, Modeling of inelastic hA- и AA-interactions (MSDM – Multi Stage Dynamical Model, from N. Sobolevsky)

S. Belogurov, ITEP/INR Moscow GERDA experiment Expected sensitivity of GERDA Phase I: implementation of existing Ge-76 diodes (~15 kg) of HdM and IGEX in new experiment (“background free”) –operation in LN2 with background <10 -2 / keV kg y –>15 kg y (free of background): scrutinize claim (97.8% excl. or 5 sigma confirmation) –sensitivity: 3 · y, eV Phase II: enlarge to ~35-40 kg (background <10 -3 / keV kg y) –within 4 years: ~100 kg y –sensitivity: 2 · y, eV Phase III: (depending on physics results of Phase I+II and on the understanding of backgrounds) –world-wide collaboration (Majorana):  500 kg

S. Belogurov, ITEP/INR Moscow GERDA experiment Expected results for DM

S. Belogurov, ITEP/INR Moscow GERDA experiment conclusions New well thought out experiment is born Let’s wish it buon voyage