Assume the axial symmetric CR density distribution with the minimum along with the axis of a cylinder Then the observed –G points toward the density minimum.

Slides:



Advertisements
Similar presentations
Cosmic Rays and Space Weather
Advertisements

Global Properties of Heliospheric Disturbances Observed by Interplanetary Scintillation M. Tokumaru, M. Kojima, K. Fujiki, and M. Yamashita (Solar-Terrestrial.
Chapter 8 The Sun – Our Star.
Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
The Independency of Stellar Mass-Loss Rates on Stellar X-ray Luminosity and Activity Space Telescope Science Institute – 2012.
Reviewing the Summer School Solar Labs Nicholas Gross.
M. J. Reiner, 1 st STEREO Workshop, March, 2002, Paris.
Bastille Day 2000 Solar Energetic Particles Event: Ulysses observations at high heliographic latitudes M. Zhang Florida Institute of Technology.
Studying Solar Wind Magnetic Reconnection Events using the Cluster 4-point Measurement Capability A.C. Foster 1, C.J. Owen 1, A.N. Fazakerley 1, C. Forsyth.
JH. Chen 1, E. Möbius 1, P. Bochsler 1, G. Gloeckler 2, P. A. Isenberg 1, M. Bzowski 3, J. M. Sokol 3 1 Space Science Center and Department of physics,
Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd March 2005 A 3D cosmic ray detector on the Moon X. Moussas University.
Forbes CME Hones TPE Distance in Rs Acceleration (m/s 2 ) CME Acceleration Solar Wind.
Identifying Interplanetary Shock Parameters in Heliospheric MHD Simulation Results S. A. Ledvina 1, D. Odstrcil 2 and J. G. Luhmann 1 1.Space Sciences.
THE SODIUM EXOSPHERE OF MERCURY: COMPARISON BETWEEN OBSERVATIONS AND MODEL A.Mura, P. Wurz, H. Lichtenegger, H. Lammer, A. Milillo, S. Orsini, S. Massetti,
The Sun and the Heliosphere: some basic concepts…
A = B = C = u – speed of CME.
CR variation during the extreme events in November 2004 Belov (a), E. Eroshenko(a), G. Mariatos ©, H. Mavromichalaki ©, V.Yanke (a) (a) IZMIRAN), ,
Intermittency beyond the ecliptic plane Anna Wawrzaszek, Marius Echim, Wiesław M. Macek, Roberto Bruno Mamaia, 6-13 September 2015 (1) Space Research Centre.
Evolution of the 2012 July 12 CME from the Sun to the Earth: Data- Constrained Three-Dimensional MHD Simulations F. Shen 1, C. Shen 2, J. Zhang 3, P. Hess.
Assessing Predictions of CME Time- of-Arrival and 1 AU Speed to Observations Angelos Vourlidas Vourlidas- SHINE
16 世纪~ 17 世纪初,出了一位是丹 麦的观测家第谷,他是个超群出众 的观测家,他用自制的精确仪器辛 勤地观测了 20 年,取得了关于行星 运动的大量数据。 ( 1546 ~ 1601 ) 第谷.
ESWW10, Antwerpen, 2013 Cosmic ray variations caused by magnetic clouds in the interplanetary disturbances A. ABUNIN,M., ABUNINA, A. BELOV, E. EROSHENKO,
Locating the solar source of 13 April 2006 Magnetic Cloud K. Steed 1, C. J. Owen 1, L. K. Harra 1, L. M. Green 1, S. Dasso 2, A. P. Walsh 1, P. Démoulin.
Ultimate Spectrum of Solar/Stellar Cosmic Rays Alexei Struminsky Space Research Institute, Moscow, Russia.
Arrival time of halo coronal mass ejections In the vicinity of the Earth G. Michalek, N. Gopalswamy, A. Lara, and P.K. Manoharan A&A 423, (2004)
A.V. Belov 1, E. A. Eroshenko 1, H. Mavromichalaki 2, V.A. Oleneva 1, A. Papaioannou 2, G. Mariatos 2, V. G. Yanke 1 (1) Institute of Terrestrial Magnetism,
Statistical properties of southward IMF and its geomagnetic effectiveness X. Zhang, M. B. Moldwin Department of Atmospheric, Oceanic, and Space Sciences,
CME trajectory deduced from cosmic ray measurements K. Munakata, T. Kuwabara and J. W. Bieber.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
By Dr. A. Mahrous Helwan University - EGYPT By Dr. A. Mahrous Helwan University - EGYPT.
TO THE POSSIBILITY OF STUDY OF THE EXTERNAL SOLAR WIND THIN STRUCTURE IN DECAMETER RADIO WAVES Marina Olyak Institute of Radio Astronomy, 4 Chervonopraporna,
P. Bobik, G. Boella, M. J. Boschini, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita 2D Stochastic Monte Carlo to evaluate the modulation.
27-Day Variations Of The Galactic Cosmic Ray Intensity And Anisotropy In Different Solar Magnetic Cycles ( ) M.V. Alania, A. Gil, K. Iskra, R.
1 SEP “Campaign Events” for SHINE 2003 Question: Can we identify solar/interplanetary factors that drive SEP spectral and compositional variability at.
The Solar System Missions. planets not shown to scale >> MercuryVenusEarthMarsJupiterSaturnUranusNeptunePluto Mean Distance from the Sun (AU)
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
ORIGIN OF THE SLOW SOLAR WIND K. Fujiki , T. Ohmi, M. Kojima, M. Tokumaru Solar-Terrestrial Environment Laboratory, Nagoya University and K. Hakamada Department.
CASS/UCSD ILWS 2009 SMEI 3D reconstructions of density behind shocks B.V. Jackson, P.P. Hick, A. Buffington, M.M. Bisi, J.M. Clover, S. Hamilton Center.
It is considered that until now in the 24th cycle of solar activity 2 ground level enhancements of solar cosmic rays (GLEs) are registered: on May 17,
SH33A-1191 GEOTAIL Observation of Interplanetary Shock-Magnetic Hole Interaction on 25 September 2001: An Overview T. Terasawa, M. Oka, K. Nakata, Y. Tanaka,
Modeling 3-D Solar Wind Structure Lecture 13. Why is a Heliospheric Model Needed? Space weather forecasts require us to know the solar wind that is interacting.
GLOBAL SURVEY METHOD: WHAT DO NEUTRON MONITORS SEE? Belov A.1, Eroshenko E.1, Abunin A. 1, Abunina M. 1, Yanke V. 1, Oleneva V.1, Mavromichalaki H.2, Papaioannou.
Radio and Space Plasma Physics Group Tracking solar wind structures from the Sun through to the orbit of Mars A.O. Williams 1, N.J.T. Edberg 1,2, S.E.
Data-constrained Simulation of CME Initiation and Propagation Antonia Savcheva ESPM 2014 September 11, 2014 Collaborators: R. Evans, B. van der Holst,
The Solar System Missions. Comparative Planetology * The study of the similarities and dissimilarities of the constituents of the solar system. * Provides.
GLOBAL SURVEY METHOD: WHAT DO NEUTRON MONITORS SEE? Belov A.1, Eroshenko E.1, Abunin A. 1, Abunina M. 1, Yanke V. 1, Oleneva V.1, Mavromichalaki H.2, Papaioannou.
A.V. Belov 1, E. A. Eroshenko 1, H. Mavromichalaki 2, V.A. Oleneva 1, A. Papaioannou 2, G. Mariatos 2, V. G. Yanke 1 (1) Institute of Terrestrial Magnetism,
Measurements of the Orientation of the Heliospheric Magnetic Field Neil Murphy Jet Propulsion Laboratory.
1 SEP Timing Studies: An Excruciatingly Brief Review Allan J. Tylka US Naval Research Laboratory, Washington DC SHINE 2006 Where was the CME when the SEPs.
IMF Prediction with Cosmic Rays THE BASIC IDEA: Find signatures in the cosmic ray flux that are predictive of the future behavior of the interplanetary.
1 Pruning of Ensemble CME modeling using Interplanetary Scintillation and Heliospheric Imager Observations A. Taktakishvili, M. L. Mays, L. Rastaetter,
Frames of Reference.  Displacement is a _______________ line distance between where something ______________ and where it ends.  Average velocity is.
Detecting, forecasting and modeling of the 2002/04/17 halo CME Heliophysics Summer School 1.
CME-driven Shocks in White Light Observations Verónica Ontiveros National University of Mexico, MEXICO George Mason University,USA Angelos Vourlidas Naval.
GROUND-LEVEL EVENT (GLE)
ICME in the Solar Wind from STEL IPS Observations
T. Laitinen, S. Dalla Jeremiah Horrocks Institute, UCLan, UK
Rick Leske, A. C. Cummings, C. M. S. Cohen, R. A. Mewaldt,
IPS g-value Measurements
A New Methodology to Predict the Axial ICME Magnetic Field at 1 AU
Investigations of CME in muon flux detected in hodoscopic mode
Prediction for Encounter with Ion Tail of Comet
MDI Global Field & Solar Wind
Proxima (TRAPPIST1) Exreme Events
  V1 and V2 Measurements of Galactic and Anomalous Cosmic Rays in the Outer Heliosphere and the Heliosheath during Solar Cycle #23   W.R. Webber (The.
Phillip Hess Jie Zhang, Dusan Odstrcil
1.5: Velocity-time graphs
GRADIENTS AND STRAIGHT LINE GRAPHS
SIDC Space Weather Briefing
SIDC Space Weather Briefing
Presentation transcript:

Assume the axial symmetric CR density distribution with the minimum along with the axis of a cylinder Then the observed –G points toward the density minimum ( ) located on the axis Assume the cylinder moving with the average solar wind velocity V sw Then the velocity V ax representing the cylinder orientation can be deduced from the apparent velocity V app, as V ax = V app - V sw model (1) V sw V ax sun V app earth -G cylinder axis density min.

model (2) earth -G R λ cylinder axis RERE density min. Assume the gaussian distribution for CR density, as R : distance from the cylinder axis I 0 : minimum density,  : radial scale of the cylinder Then G(R E ) observed at the earth (R= R E ) is… R E : minimum distance between the earth & the cylinder axis (1) (2) With the observed G(R E ), R E can be calculated from (2) for each set of parameters, I 0 & Find a set of I 0 & giving the best-fit G(R E ) to the observed gradient

Two CME events in 2001analyzed 35 directions (Nagoya-Japan, Hobart-Australia, SaoMartinho- Brazil) Prototype Muon network Onset time of SSC Max. K p FD size Corresponding CME Associated X-ray flare Onset timeSizeLocation 4/11 13: % 4/10 05:30X  S, 9  W 8/27 19: % 8/25 16:50X  S, 34  E CR data used S.Watari 2002

Observation 4/118/27 ρGx ρGy ρGz

Results for Apr. 11 event cylinder orientation :  = 50.2   = -5.2  passed the earth at R E = AU best-fit parameters : I 0 = % = AU averages over the best-fit period: Vsw = 696 km/s B = 21.2 nT  = AU

cylinder orientation :  = 66.4   =  Passed the earth at R E = AU best-fit parameters : I 0 = % = AU Results for Aug. 27 CME averages over the best-fit period: Vsw = 533 km/s B = 7.4 nT  = 0.15 AU

Density profiles Apr. 11 CMEAug. 27 CME

Results for Apr. 11 event by NM cylinder orientation :  =   = 15.7  passed the earth at R E = AU best-fit parameters : I 0 = % = AU averages over the best-fit period: Vsw = 696 km/s B = 21.2 nT  = AU

cylinder orientation :  = 57.9   =  Passed the earth at R E = AU best-fit parameters : I 0 = % = AU Results for Aug. 27 CME by NM averages over the best-fit period: Vsw = 533 km/s B = 7.4 nT  = AU

Density profiles by NM Apr. 11 CMEAug. 27 CME