Chapter 6 Normal Random Variable

Slides:



Advertisements
Similar presentations
Normal and Standard Normal Distributions June 29, 2004.
Advertisements

Fall 2006 – Fundamentals of Business Statistics 1 Chapter 4 Using Probability and Probability Distributions.
The Normal Distribution
Normal distribution. An example from class HEIGHTS OF MOTHERS CLASS LIMITS(in.)FREQUENCY
Chapter 6: Standard Scores and the Normal Curve
Topic 3 The Normal Distribution. From Histogram to Density Curve 2 We used histogram in Topic 2 to describe the overall pattern (shape, center, and spread)
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter The Normal Probability Distribution 7.
CHAPTER 6 CONTINUOUS RANDOM VARIABLES AND THE NORMAL DISTRIBUTION Prem Mann, Introductory Statistics, 8/E Copyright © 2013 John Wiley & Sons. All rights.
Biostatistics Unit 4 - Probability.
Chapter 6 Introduction to Continuous Probability Distributions
Continuous Random Variables and Probability Distributions
1.2: Describing Distributions
CONTINUOUS RANDOM VARIABLES AND THE NORMAL DISTRIBUTION
CHAPTER 3: The Normal Distributions Lecture PowerPoint Slides The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner.
Chapter 6: Some Continuous Probability Distributions:
Normal distribution and introduction to continuous random variables and continuous probability density functions...
McGraw-Hill Ryerson Copyright © 2011 McGraw-Hill Ryerson Limited. Adapted by Peter Au, George Brown College.
Chapter 6 Normal Probability Distributions
1. Normal Curve 2. Normally Distributed Outcomes 3. Properties of Normal Curve 4. Standard Normal Curve 5. The Normal Distribution 6. Percentile 7. Probability.
Chapter 11: Random Sampling and Sampling Distributions
Normal Distributions Section 4.4. Normal Distribution Function Among all the possible probability density functions, there is an important class of functions.
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area.
Chapter 7: The Normal Probability Distribution
Chapter 6 The Normal Probability Distribution
8.5 Normal Distributions We have seen that the histogram for a binomial distribution with n = 20 trials and p = 0.50 was shaped like a bell if we join.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 8 Continuous.
Probability Quantitative Methods in HPELS HPELS 6210.
Section 7.1 The STANDARD NORMAL CURVE
Business Statistics: Communicating with Numbers
Continuous Random Variables
1 Normal Random Variables In the class of continuous random variables, we are primarily interested in NORMAL random variables. In the class of continuous.
QBM117 Business Statistics Probability and Probability Distributions Continuous Probability Distributions 1.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Learning Objectives for Section 11.5 Normal Distributions The student will be able to identify what is meant.
Stat 1510: Statistical Thinking and Concepts 1 Density Curves and Normal Distribution.
Chapter 11 Data Descriptions and Probability Distributions Section 5 Normal Distribution.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 6. Continuous Random Variables Reminder: Continuous random variable.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Continuous Random Variables Chapter 6.
Copyright © 2014, 2013, 2010 and 2007 Pearson Education, Inc. Chapter The Normal Probability Distribution 7.
Chapter 7 Continuous Distributions. Continuous random variables Are numerical variables whose values fall within a range or interval Are measurements.
Normal Distribution Section 2.2. Objectives  Introduce the Normal Distribution  Properties of the Standard Normal Distribution  Use Normal Distribution.
Chapter 6 Some Continuous Probability Distributions.
Essential Statistics Chapter 31 The Normal Distributions.
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 6 Probability Distributions Section 6.2 Probabilities for Bell-Shaped Distributions.
Applications of Integration 6. Probability Probability Calculus plays a role in the analysis of random behavior. Suppose we consider the cholesterol.
Normal distributions The most important continuous probability distribution in the entire filed of statistics is the normal distributions. All normal distributions.
Random Variables Presentation 6.. Random Variables A random variable assigns a number (or symbol) to each outcome of a random circumstance. A random variable.
Copyright © 2014, 2013, 2010 and 2007 Pearson Education, Inc. Chapter The Normal Probability Distribution 7.
§ 5.3 Normal Distributions: Finding Values. Probability and Normal Distributions If a random variable, x, is normally distributed, you can find the probability.
INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Life and Social Sciences  2011 Pearson Education, Inc. Chapter 16 Continuous Random.
Understanding Basic Statistics Fourth Edition By Brase and Brase Prepared by: Lynn Smith Gloucester County College Chapter Seven Normal Curves and Sampling.
Chapter 6 The Normal Distribution.  The Normal Distribution  The Standard Normal Distribution  Applications of Normal Distributions  Sampling Distributions.
Chapter 7 Estimates, Confidence Intervals, and Sample Sizes
+ Unit 4 – Normal Distributions Week 9 Ms. Sanchez.
Chapter 7 The Normal Probability Distribution 7.1 Properties of the Normal Distribution.
Chapter 131 Normal Distributions. Chapter 132 Thought Question 2 What does it mean if a person’s SAT score falls at the 20th percentile for all people.
The Normal Approximation for Data. History The normal curve was discovered by Abraham de Moivre around Around 1870, the Belgian mathematician Adolph.
Empirical Rule 68% 95% 99.7% % RULE Empirical Rule—restated 68% of the data values fall within 1 standard deviation of the mean in either direction.
THE NORMAL DISTRIBUTION
Copyright ©2011 Brooks/Cole, Cengage Learning Continuous Random Variables Class 36 1.
CHAPTER 2 Modeling Distributions of Data
The Normal Probability Distribution
Normal Distribution and Parameter Estimation
Applications of the Normal Distribution
The Normal Probability Distribution
Introduction to Probability and Statistics
Copyright © Cengage Learning. All rights reserved.
CONTINUOUS RANDOM VARIABLES AND THE NORMAL DISTRIBUTION
10-5 The normal distribution
The Normal Curve Section 7.1 & 7.2.
Continuous Probability Distributions
Presentation transcript:

Chapter 6 Normal Random Variable

Chapter 6 Normal Random Variable 6.1 Introduction 6.2 Continuous Random Variables 6.3 Normal Random Variables 6.4 Probabilities Associated with a Standard Normal Random Variable 6.5 Finding Normal Probabilities: Conversion to the Standard Normal 6.6 Additive Property of Normal Random Variables 6.7 Percentiles of Normal Random Variables

Introduction In this chapter we introduce and study the normal distribution. The normal distribution is one of a class of distributions that are called continuous. The standard normal distribution is a normal distribution having mean 0 and variance 1. The normal distribution was introduced by the French mathematician Abraham De Moivre in 1733.

Continuous Random Variable A continuous random variable is one whose set of possible values is an interval. For example, such variables as the time it takes to complete a scientific experiment and the weight of an individual are usually considered to be continuous random variables. Every continuous random variable X has a curve associated with it. This curve, formally known as a probability density function, can be used to obtain probabilities associated with the random variable. Consider any two points a and b, where a is less than b. The probability that X assumes a value that lies between a and b is equal to the area under the curve between a and b. P{a ≤ X ≤ b} = area under curve between a and b Figure 6.1 presents a probability density function. The total area under the density curve must equal 1. P{a ≤ X ≤ b} = P{a < X < b}

Normal Random Variables The probability density function of a normal random variable X is determined by two parameters: the expected value (μ) and the standard deviation (σ) of X. The normal probability density function is a bell-shaped density curve that is symmetric about the value μ. Its variability is measured by σ. The larger σ is, the more variability there is in this curve.

Normal Random Variables The probability density function of a normal random variable X is symmetric about its expected value μ. P{X < μ} = P{X > μ} = ½ Not all bell-shaped symmetric density curves are normal. The height of the normal density curve above point x on the abscissa ( 橫座標) is A standard normal random variable is a normal random variable having mean value 0 and standard deviation 1, and its density curve is called the standard normal curve. The letter Z is used to represent a standard normal random variable.

Normal Random Variables

Example 6.1 Test scores on the Scholastic Aptitude Test (SAT) verbal portion (口說部 份) are normally distributed with a mean score of 504. If the standard deviation of a score is 84, then we can conclude that Approximately 68 percent of all scores are between 504 − 84 = 420 and 504 + 84 = 588. Approximately 95 percent of them are between 504 − 168 = 336 and 504 + 168 = 672. Approximately 99.7 percent are between 252 and 756.

Exercise (p. 269, 2; 3, 4) The heights of a certain population of males are normally distributed with mean 69 inches and standard deviation 6.5 inches. Approximate the proportion of this population whose height is less than 82 inches. Let Z refer to a standard normal random variable. Draw a picture in each case to justify your answer. (1) P{−2 < Z < 2} is approximately (a) 0.68 (b) 0.95 (c) 0.975 (d) 0.50 (2) P{Z > −1} is approximately (a) 0.50 (b) 0.95 (c) 0.84 (d) 0.16

Probabilities Associated with a Standard Normal Random Variable Let Z be a standard normal random variable. For each nonegative value of x, Table 6.1 specifies the probability that Z is less than x. (P{Z < x})

Probabilities of Random Variable Z For each nonnegative value of x, Table 6.1 specifies the probability that Z is less than x. For instance, P{Z < 1.22} = 0.8888 We can also use Table 6.1 to determine the probability that Z is greater than x. P{Z ≤ 2} + P{Z > 2} = 1 P{Z > 2} = 1 − P{Z ≤ 2} = 1 − 0.9772 = 0.0228

Example 6.2 Find (a) P{Z < 1.5} (b) P{Z ≥ 0.8} Solution (a) From Table 6.1, P{Z < 1.5} = 0.9332 (b) From Table 6.1, P{Z < 0.8} = 0.7881 P{Z ≥ 0.8} = 1 − 0.7881 = 0.2119

Probabilities of Random Variable Z

Example 6.3 Find (a) P{1 < Z < 2} (b) P{−1.5 < Z < 2.5} Solution (a )P{1 < Z < 2} = P{Z < 2} − P{Z < 1} = 0.9772 − 0.8413= 0.1359 (b) P{−1.5 < Z < 2.5} = P{Z < 2.5} − P{Z < −1.5} = P{Z < 2.5} − P{Z > 1.5} = 0.9938 − (1 − 0.9332)= 0.9270

Example 6.4 Find P{|Z|> 1.8} Solution (a )P{ |Z| >1.8} = 2P{Z >1.8 } = 2(1 − 0.9641) = 0.0718 In general, for any value of x and any positive value of a P{Z < −x} = P{Z > x} = 1 − P{Z < x} P{|Z| > a} = P{Z > a} + P{Z < −a} = 2P{Z > a} P{−a < Z < a} = 2P{Z < a} − 1

Exercise (p. 276, 5; p.277, 6, 7) Argue, using either pictures or equations, that for any positive value of a, P{−a < Z < a}=2P{Z < a}−1 Find (a) P{−1< Z <1} (b) P{|Z| < 1.4} Find the value of x, to two decimal places, for which (a) P{Z > x}= 0.05 (e) P{Z < x}= 0.66 (g) P{|Z| < x}= 0.75

Finding Normal Probabilities: Conversion to the Standard Normal Let X be a normal random variable with mean μ and standard deviation σ. We can determine probabilities concerning X by using the standard normal distribution Z Z = (X − μ) /σ Suppose we want to compute P{X < a}. Since X < a is equivalent to the statement where Z is a standard normal random variable.

Example 6.6 IQ examination scores for sixth-graders are normally distributed with mean value 100 and standard deviation 14.2. (a) What is the probability a randomly chosen sixth-grader has a score greater than 130? (b) What is the probability a randomly chosen sixth-grader has a score between 90 and 115? Solution Let X denote the score of a randomly chosen student. the standard normal distribution Z can be calculated (a) (b)

Example 6.7 Let X be normal with mean μ and standard deviation σ. Find (a) P{|X − μ| > σ} (b) P{|X − μ| > 2σ} (c) P{|X − μ| > 3σ} Solution Z = (X − μ) /σ

Additive Property of Normal Random Variables Notice that

Example 6.8 Suppose the amount of time a light bulb works before burning out is a normal random variable with mean 400 hours and standard deviation 40 hours. If an individual purchases two such bulbs, one of which will be used as a spare to replace the other when it burns out, what is the probability that the total life of the bulbs will exceed 750 hours? Solution Let X is the life of the bulb used first and Y is the life of the other bulb. The mean and the deviation of X+Y are 800 and respectively. Therefore, there is an 81 percent chance that the total life of the two bulbs exceeds 750 hours.

Example 6.9 Data from the U.S. Department of Agriculture (農業部) indicate that the annual amount of apples eaten by a randomly chosen woman is normally distributed with a mean of 19.9 pounds and a standard deviation of 3.2 pounds, whereas the amount eaten by a randomly chosen man is normally distributed with a mean of 20.7 pounds and a standard deviation of 3.4 pounds. Suppose a man and a woman are randomly chosen. What is the probability that the woman ate a greater amount of apples than the man? Solution Let X denote the amount eaten by the woman and Y denote the amount eaten by the man. We want to determine P{X > Y}, or equivalently P{X − Y > 0}. Let W = X − Y That is, with probability 0.4325 the randomly chosen woman would have eaten a greater amount of apples than the randomly chosen man.

Exercise (p. 282, 3; p. 284, 15) The length of time that a new hair dryer functions before breaking down is normally distributed with mean 40 months and standard deviation 8 months. The manufacturer is thinking of guaranteeing each dryer for 3 years. What proportion of dryers will not meet this guarantee? (Take home) The height of adult women in the United States is normally distributed with mean 64.5 inches and standard deviation 2.4 inches. Find the probability that a randomly chosen woman is (a) Less than 63 inches tall (b) Less than 70 inches tall (c) Between 63 and 70 inches tall (d) Alice is 72 inches tall. What percentage of women are shorter than Alice? (e) Find the probability that the average of the heights of two randomly chosen women is greater than 67.5 inches.

Percentiles of Normal Random Variables For any α between 0 and 1, zα can be defined as the probability that a standard normal random variable is greater than zα is equal to α. P{Z > zα} = α The value of zα can be determined by using Table 6.1. For instance, suppose we want to find z0.025. (α = 0.025) P{Z < z0.025} = 1 − P{Z > z0.025} = 1 − 0.025 = 0.975 Search in Table 6.1 for the entry 0.975, we can find the value x that corresponds to this entry. Since the value 0.975 is found in the row labeled 1.9 and the column labeled 0.06 z0.025 = 1.96 That is, 2.5 percent of the time a standard normal random variable will exceed 1.96.

Percentiles of Normal Random Variables Since 100(1 − α) percent of the time a standard normal random variable will be less than zα, we call zα the 100(1 − α) percentile of the standard normal distribution. Suppose that we want to find z0.05. If we search Table 6.1 for the value 0.95, we do not find this exact value. P{Z < 1.64} = 0.9495 and P{Z < 1.65} = 0.9505 Therefore, it would seem that z0.05 lies roughly halfway between 1.64 and 1.65, and so we could approximate it by 1.645. z0.05 = 1.645

Example 6.10 Find (a) z0.25 (b) z0.80. Solution

Example 6.11 An IQ test produces scores that are normally distributed with mean value 100 and standard deviation 14.2. The top 1 percent of all scores is in what range? Solution

Percentiles of Normal Random Variables

Exercise (p. 289, 1, 3; p.290, 12) Find to two decimal places: (a) z0.07 (e) z0.65 (f) z0.50 (h) z0.008 If X is a normal random variable with mean 50 and standard deviation 6, find the approximate value of x for which (b) P{X > x}=0.10 (d) P{X < x}=0.05 Scores on the quantitative part of the Graduate Record Examination were normally distributed with a mean score of 510 and a standard deviation of 92. How high a score was necessary to be in the top (a) 10 (b) 1 percent of all scores?

KEY TERMS Continuous random variable: A random variable that can take on any value in some interval. Probability density function: A curve associated with a continuous random variable. The probability that the random variable is between two points is equal to the area under the curve between these points. Normal random variable: A type of continuous random variable whose probability density function is a bell-shaped symmetric curve. Standard normal random variable: A normal random variable having mean 0 and variance 1. 100p percentile of a continuous random variable: The probability that the random variable is less than this value is p.