18 Septembert 2007V.Kekelidze, V-high mult. conf1  Introduction  Experimental tasks  Basic Principles  Simulation  General view of MPD & the magnet.

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

Ultra Peripheral Collisions at RHIC Coherent Coupling Coherent Coupling to both nuclei: photon~Z 2, Pomeron~A 4/3 Small transverse momentum p t ~ 2h 
Results from PHENIX on deuteron and anti- deuteron production in Au+Au collisions at RHIC Joakim Nystrand University of Bergen for the PHENIX Collaboration.
Centauro and STrange Object Research (CASTOR) - A specialized detector system dedicated to the search for Centauros and Strangelets in the baryon dense,
Henrik Tydesjö May O UTLINE - The Quark Gluon Plasma - The Relativistic Heavy Ion Collider (RHIC) The PHENIX Experiment - QGP Signals Event-by-Event.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Supriya Das SQM 2006, 26th March 2006, UCLA 1 Event By Event Fluctuation in K/  ratio atRHIC Supriya Das § VECC, Kolkata (for STAR Collaboration) § Present.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
The Physics Potential of the PHENIX VTX and FVTX Detectors Eric J. Mannel WWND 13-Apr-2012.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
MPD Experiment (Multi Purpose Detector) V.Kekelidze 1 18 December V.Kekelidze Round Table Dubna.
The Project NICA/MPD at JINR (Dubna) Search for the Mixed Phase of Strongly Interacting Matter at Nuclotron-based Ion Collider FAcility (1  1.5)·10 27.
Current Status of Hadron Analysis Introduction Hadron PID by PHENIX-TOF  Current status of charged hadron PID  CGL and track projection point on TOF.
15 th CBM collaboration meeting, GSI, Darmstadt, Germany, April 12-16, 2010Wang Yi, Tsinghua University R&D status of low resistive glass and high rate.
RESEARCH POSTER PRESENTATION DESIGN © The RHIC Beam Energy Scan (BES) was proposed to search for the possible critical.
Status of Projectile Spectator Detector A.Kurepin (Institute for Nuclear Research, Moscow) I. Introduction to PSD. II. Conception and design. III. Development.
Reaction plane reconstruction1 Reaction plane reconstruction in extZDC Michael Kapishin Presented by A.Litvinenko.
Centrality Determination and Reaction plane reconstruction with MPD D.Dryablov, V. Zhezher, M.Kapishin, G.Musulmanbekov XIV GDRE Workshop, Dubna
1 Plans for JINR participation at FAIR JINR Contributions: ● Accelerator Complex ● Condensed Baryonic Matter ● Antiproton Physics ● Spin Physics Physics.
 Production at forward Rapidity in d+Au Collisions at 200 GeV The STAR Forward TPCs Lambda Reconstruction Lambda Spectra & Yields Centrality Dependence.
6-7 October 2006 MPD Dubna, Russia Mixed Phase Detector (MPD) Joint Institute for Nuclear Research Conceptual project S.Afanasiev, V.Babkin, A.Baldin,
Grazyna Odyniec STAR physics program and technical challenges with the RHIC Au+Au energy scan Grazyna Odyniec/LBNL for STAR collaboration QM 2008, Jaipur,
Charged Hadron Nuclear Modification Factors in the Beam Energy Scan data from STAR Stephen Horvat for the STAR collaboration Yale University Stephen HorvatCPOD.
28 Septembert 2007V.Kekelidze, 102 session of SC1  Introduction  Physics motivation  New Basic facility - Collider NICA - Nuclotron-M – as the first.
Impact parameter resolution study for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
V.I. Kolesnikov on behalf of the MPD-TOF group Round Table Discussion JINR, Dubna 9-12 September 2009 Study of charged hadron Study of charged hadron production.
ECAL PID1 Particle identification in ECAL Yuri Kharlov, Alexander Artamonov IHEP, Protvino CBM collaboration meeting
Time of Flight Detectors at RHIC Time of Flight Measurements at RHIC  TOF detector as a PID devices  PHENIX-TOF and BRAHMS-TOF PHENIX Time-of-Flight.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
Charged Particle Multiplicity and Transverse Energy in √s nn = 130 GeV Au+Au Collisions Klaus Reygers University of Münster, Germany for the PHENIX Collaboration.
RPC Design Studies Gabriel Stoicea, NIPNE-HH, Bucharest CBM Software Week GSI-Darmstadt May 10, 2004.
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
First measurements in Pb—Pb collisions at  s NN =2.76 TeV with ALICE at the LHC M. Nicassio (University and INFN Bari) for the ALICE Collaboration Rencontres.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Feasibility study of Heavy Flavor tagging with charged kaons in Au-Au Collisions at √s=200 GeV triggered by High Transverse Momentum Electrons. E.Kistenev,
1 Guannan Xie Nuclear Modification Factor of D 0 Mesons in Au+Au Collisions at √s NN = 200 GeV Lawrence Berkeley National Laboratory University of Science.
January 15, 2004CMS Heavy Ions Bolek Wyslouch1 Bolek Wyslouch MIT for the CMS Collaboration Quark Matter 2004, Oakland, CA CMS HI groups: Athens, Auckland,
PHOBOS at RHIC 2000 XIV Symposium of Nuclear Physics Taxco, Mexico January 2001 Edmundo Garcia, University of Maryland.
July 27, 2002CMS Heavy Ions Bolek Wyslouch1 Heavy Ion Physics with the CMS Experiment at the Large Hadron Collider Bolek Wyslouch MIT for the CMS Collaboration.
Study of Charged Hadrons in Au-Au Collisions at with the PHENIX Time Expansion Chamber Dmitri Kotchetkov for the PHENIX Collaboration Department of Physics,
Development of FLINT experiment Konstantin Mikhailov for FLINT collaboration ITEP 24 November 2011 The Session-conference of Nuclear Physics Division of.
MPD concept, structure & plans V.Kekelidze, Round Table IV, Dubna 1 11 September 2009.
Jet Production in Au+Au Collisions at STAR Alexander Schmah for the STAR Collaboration Lawrence Berkeley National Lab Hard Probes 2015 in Montreal/Canada.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
SP- 41 magnet ZDC RPC (TOF) DC ST Target T0 detector MPD / NICA and / Nuclotron Experiments Picosecond Cherenkov detectors for heavy ion experiments.
NSS2006Shengli Huang1 The Time of Flight Detector Upgrade at PHENIX Shengli Huang PHENIX Collaboration Outlines: 1.Physics motivations 2.Multi-gap Resistive.
24 May 2008V.Kekelidze, CC NICA/MPD1  Collider versus Fixed Target  Towards 4  acceptance  Working groups - EC  TPC - EC tracking (examples)  Plans.
Fall DNP Meeting,  meson production in Au-Au and d-Au collision at \ /s NN = 200 GeV Dipali Pal Vanderbilt University (for the PHENIX collaboration)
Vasilisa Lenivenko Vladimir Palichik (LHEP, JINR ) Alushta, June 2016.
Multi-Strange Hyperons Triggering at SIS 100
eTOF - status and plan CBM-STAR joint Workshop Outline Introduction
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
A heavy-ion experiment at the future facility at GSI
Calorimeters at CBM A. Ivashkin INR, Moscow.
NA61/SHINE: status and energy scans with Pb+Pb collisions
STAR Geometry and Detectors
NUCLEUS-NUCLEUS COLLISION Centrality Determination For NICA/MPD
Experimental Particle Physics
Muon Detector Jiawen ZHANG 16 September 2002.
STAR Detector Event selection and triggers Corrections to data
Heavy Ion Physics at NICA Simulations G. Musulmanbekov, V
Experimental Particle Physics
Presentation transcript:

18 Septembert 2007V.Kekelidze, V-high mult. conf1  Introduction  Experimental tasks  Basic Principles  Simulation  General view of MPD & the magnet  Major Sub-Detectors: Inner Tracker Tracker RPC (TOF) ZDC  Summary MultiPurpose Detector NICA for NICA

18 Septembert 2007V.Kekelidze, V-high mult. conf2 Introduction  NICA / MPD project has started to study of hot & dense strongly interacting QCD matter & search for possible manifestation of the mixed phase formation & critical endpoint in heavy ion collisions /proposed by A.N.Sisakian and A.S.Sorin /  NICA / MPD is a leading LHE project in both – research program & development of basic facility in  it is expected that this flagship project provides: - the frontier researches in heavy ion physics - attraction of young physicists & worldwide cooperation - development of new technologies (incl. nanotechnologies) - essential extra funds

18 Septembert 2007V.Kekelidze, V-high mult. conf3  The new JINR facility based on the upgraded Nuclotron – heavy Ion collider with max energy  S NN = 9 GeV & mean luminosity of L=10 27 cm -2 s -1 (for U+U collision)  These investigations are relevant to understanding of the evolution of the Early Universe and formation of the neutron stars and the physics of heavy ion collisions.  It will allow to study in-medium properties of hadrons and nuclear matter equation of state including a search for possible manifestation of deconfiment and/or chiral symmetry restoration phase transition & QCD critical end-point in the energy region of  S NN = 3-9 GeV

18 Septembert 2007V.Kekelidze, V-high mult. conf4 NICA complex allocation MPD

18 Septembert 2007V.Kekelidze, V-high mult. conf5  Event-to event fluctuation in hadron productions (multiplicity, Pt etc.)  HBT correlations indicating the space-time size of the systems involving π, K, p, Λ (possible changes close to the de-confiment point)  Directed & elliptic flows for various hadrons  Multi-strange hyperon production: yield & spectra (the probes of nuclear media phases) The first stage of experimental tasks foresees to study the following effects (on energy & centrality scanning):

18 Septembert 2007V.Kekelidze, V-high mult. conf6 Possible indication on phase transition measurements of related yields for charged kaons & pions Some enhancement is indicated in the energy region around ~ Е лаб = 30 А ГэВ

18 Septembert 2007V.Kekelidze, V-high mult. conf7  Technical solutions should be as simple as possible  Detailed simulation of expected parameters & corresponding cross-checks by available data  The experiment should fulfill the major requirement: physical observables must be clearly distinguished from possible apparatus effects Basic principles of experimental approach

18 Septembert 2007V.Kekelidze, V-high mult. conf8 Basic principles of organization to approach  At first approximation - all sub-detectors could be designed & constructed at JINR based on the existing expertise & infrastructure  Major sub-detectors (tracker) have alternative design in order to provide possibility for collaborators to substitute/accomplish corresponding groups in future  The first realistic draft should be ready by January 2008  The rough cost estimation should be done by that time as well

18 Septembert 2007V.Kekelidze, V-high mult. conf9 First stage of simulation (based on UrQMD & GEANT4 in the framework of MPD-Root shell)  Au+Au collisions with total energy of GeV/n  Central interaction within b: 0 – 3 fm  Minimum bias within b: 0 – 15.8 fm  Collision rate at at L=10 27 cm -2 s -1 : ~ 6 kHz

18 Septembert 2007V.Kekelidze, V-high mult. conf10 Collision region

18 Septembert 2007V.Kekelidze, V-high mult. conf11 Charged particle multiplicity central collision |η| 100 MeV/c ~ 450

18 Septembert 2007V.Kekelidze, V-high mult. conf12 Momentum spectrum all B=0 = 0.4 GeV/c

18 Septembert 2007V.Kekelidze, V-high mult. conf13 momentum spectra for various particles π+π+ π-π- K+K+ K-K GeV/c

18 Septembert 2007V.Kekelidze, V-high mult. conf14 MPD General View

18 Septembert 2007V.Kekelidze, V-high mult. conf15 Basic geometry (dimensions) preliminary Defined as a compromise between: -TOF requirement -tracker resolution -magnetic field formation limited by collider optics

18 Septembert 2007V.Kekelidze, V-high mult. conf16 Magnet  superconducting solenoidal magnet  magnetic field 0.5 T  cryostat inner diameter (available for the detector) ~ 1.5 m  colour step 0.5 Gauss (~1 pm) - good homogeneity

18 Septembert 2007V.Kekelidze, V-high mult. conf17  Inner Tracker (IT) - silicon strip detector  Barrel Tracker (BT) - Straw or TPC pseudo-rapidity region from -1 to 1  End Cap Tracker (ECT) – Straw Chambers (to define reaction plane)  Resistive Plate Chamber (RPC) (to measure Time of Flight)  Electromagnetic Calorimeter (ECAL)  Zero Degree Calorimeter (ZDC) (for centrality definition)  Beam-Beam Counters (BBC) (to define centrality & interaction point) MPD major sub-detectors

18 Septembert 2007V.Kekelidze, V-high mult. conf18 Inner Tracker  Complementary detector for track precise reconstruction in the region close to the interaction piont  Cylindrical geometry (4 layers) covering the interaction region ~ 50 cm along the beam axis  Possible contribution to the dE/dx measurement for charged particles

18 Septembert 2007V.Kekelidze, V-high mult. conf19 Longitudinal view of MPD SVT Detector module Carbon ladder Collider chamber Beams

18 Septembert 2007V.Kekelidze, V-high mult. conf20 Transverse view of MPD SVT Number of modules 357. Number of detectors 714. Number of electronic channels cm

18 Septembert 2007V.Kekelidze, V-high mult. conf21 Barrel & End Cap Trackers Straw detector (optional) BT  major detector for charged particle track reconstruction and momentum measurement (P T component)  to measure z-coordinate of the hit with acceptable occupancy -crossing straw geometry is implemented (hyperbolic shape as the whole) - each straw is segmented by 18 parts ECT  the wheels with radial straws to define the production plane

18 Septembert 2007V.Kekelidze, V-high mult. conf22 Straw Tracker preliminary

18 Septembert 2007V.Kekelidze, V-high mult. conf23 Barrel Straw Tracker

18 Septembert 2007V.Kekelidze, V-high mult. conf24 EC Straw Tracker

18 Septembert 2007V.Kekelidze, V-high mult. conf25 Occupancy in the straw segments at various radiuses R = 30 cmR = 115 cm

18 Septembert 2007V.Kekelidze, V-high mult. conf26 TPC option for the Tracker

18 Septembert 2007V.Kekelidze, V-high mult. conf27 Time of Flight  t he major detector for particle identification  separation should be provided for pion / kaon in the momentum range 0-1,5 GeV/c for proton / kaon in the momentum range 0-2,5 GeV/c  2 stations of scintillation counters situated symmetrically from the interaction region near the beam pipe give the start signal  RPC detectors on the radius 1,3 m provides the TOF measurement  in addition RPS provides targeting for track reconstruction in BT

18 Septembert 2007V.Kekelidze, V-high mult. conf28 Proposed parameters  Radius from the beam line - 1,3 m  Time resolution -100 ps  Max momentum of π/K system separated better than 2,5 σ at 1,3GeV/c  Efficiency (acceptance) for π/K – better than 97%

18 Septembert 2007V.Kekelidze, V-high mult. conf29 Configuration  the RPC TOF system looks like barrel with the length 4 m and radius of 1,3 m.  the barrel surface is about 33 m2  the dimensions of one RPC counter is 7 cm x 100 cm it has 150 pads with size 2,3cm x 2 cm.  the full barrel is covered by 160 counters  the total number of readout channels is 24000

18 Septembert 2007V.Kekelidze, V-high mult. conf30

18 Septembert 2007V.Kekelidze, V-high mult. conf31

18 Septembert 2007V.Kekelidze, V-high mult. conf32

18 Septembert 2007V.Kekelidze, V-high mult. conf33

18 Septembert 2007V.Kekelidze, V-high mult. conf34 Gas gap = 0.23 mm Readout strip thickness = 0.5 mm Total active area width = 11.2 cm Honeycomb width = 12 cm Inner glass width = 11.2 cm Outer glass width = 11.5 cm PCB width = 13 cm Outer glass = 1.1 mm Inner glass = 0.55 mm carbon tape = 0.9 mm Mylar thickness = 0.25 mm PCB thickness = 1.5 mm Honeycomb thickness = 9.5 mm Strip width = 3 cm Strip interval = 0.3 cm PCB length = 52.8 cm Strip length = 47 cm Inner glass length = 47 cm Honeycomb = 48 cm Outer glass length = 47.4 cm TOF RPC design

18 Septembert 2007V.Kekelidze, V-high mult. conf35

18 Septembert 2007V.Kekelidze, V-high mult. conf36 Separation for Central events

18 Septembert 2007V.Kekelidze, V-high mult. conf37 Separation for Central events π+π+ K+K+ p

18 Septembert 2007V.Kekelidze, V-high mult. conf38 Electromagnetic Calorimeter  absorber / scintillator sandwich with MAPD readout In progress

18 Septembert 2007V.Kekelidze, V-high mult. conf39 Zero Degree Calorimeter  measurement of centrality: b~ A - Nspect selection of centrality at trigger level  measurement of event-by-event fluctuations to exclude the fluctuation of participants  monitor of beam intensity by detecting the neutrons from electromagnetic dissociation  ε e / ε h = 1 - compensated calorimeter  Lead / Scintillator sandwich

18 Septembert 2007V.Kekelidze, V-high mult. conf40 Schematic view of ZDC configuration Very peripheral collision Detection of neutrons. (4 modules) Beam hole Full beam intensity. Minimum 16 modules. spectator spots at Z=3 m E au =4.5 AGeV X Z Optional

18 Septembert 2007V.Kekelidze, V-high mult. conf41  The works on MPD design have been started high activity of many experts  New ideas & suggestions are under consideration still  Full simulation and event reconstruction works are in progress  The configurations for TPC & Ecal will be proposed soon  The major milestones are fixed the Letter of Intend to be ready by January 2008 Summary

18 Septembert 2007V.Kekelidze, V-high mult. conf42 Thanks to the working group NICA center group: Afanasiev S.V. Nikitin V.A. Borisov V.V. Peshekhonov V.D. Pavlyuk A.V. Golovatyuk V.M. Kurepin A.B. + volunteers Shabunov A.V. Potrebenikov YU.K. Zanevskij Yu.V. Kiryushin Yu.T. Murin Yu.A. Tyapkin I.A. Arkhipkin D. Abramyan H. Avdejchikov V.V. …….…..

18 Septembert 2007V.Kekelidze, V-high mult. conf43 Spare

18 Septembert 2007V.Kekelidze, V-high mult. conf44 I этап: 2007 – 2008 гг. - Развитие Нуклотрона - подготовка Технического проекта NICA - начало испытаний прoтотипов элементов MPD и NICA II этап: 2008 – 2012 гг. - Разработка и создание Бустера нуклотрона - Разработка и создание коллайдера NICA и установки MPD III этап: 2010 – 2013 гг. - монтаж коллайдера и установки MPD IV этап: 2013 г. - наладка и запуск Key experiments to understand the fundamental nature of matter Основные этапы и организация работ Основные этапы:

18 Septembert 2007V.Kekelidze, V-high mult. conf45 Требуется показать реализуемость проекта, для чего необходимо:  Определить и апробировать составляющие субпроекты; наметить график подготовки полномасштабного технического проекта (TDR)  Определить основных исполнителей и начать формирование Международной Коллаборации для его реализации  Уточнить временную шкалу реализации проекта и его стоимость; возможные источники финансирования Key experiments to understand the fundamental nature of matter Срочные работы первого этапа:

18 Septembert 2007V.Kekelidze, V-high mult. conf46 Организован в 2006: А.Н.Сисакян А.С.Сорин В.Д.Тонеев А.Д.Коваленко И.Н.Мешков А.И.Малахов С.В.Афанасьев В.А.Никитин Проводятся регулярные совещания; проведен ряд расширенных совещаний (в т.ч. «Круглый стол» с привлечением внешних экспертов) Key experiments to understand the fundamental nature of matter Инициативный (координационный) комитет

18 Septembert 2007V.Kekelidze, V-high mult. conf47 5 Modules: 1-st, 3-th, 5-th – φ (2; 2; 4 layers); 2-d, 4-th - ± 7 o ( 3; 3 layers) L -2,4 m; R - from 20 cm to 120 cm 4 mm in diameter straws – ; Tracker (Barrel Straw Tracker) preliminary

18 Septembert 2007V.Kekelidze, V-high mult. conf48 4 mm in diameter segmented straws, L -2,4 m: – pc 20 cm 40 cm 60 cm Segmentation of 1-st and 2-d modules: Segmentation of 3-th, 4-th and 5-th modules: 60 cm Total: channels Tracker (Barrel Straw Tracker) continuation