Chapter 5 – AP Chemistry Gases.

Slides:



Advertisements
Similar presentations
Gases.
Advertisements

Gases: Their Properties and Behavior
PRINCIPLES OF CHEMISTRY I CHEM 1211 CHAPTER 6
GASES! AP Chapter 10. Characteristics of Gases Substances that are gases at room temperature tend to be molecular substances with low molecular masses.
A.P. Chemistry Chapter 5 Gases Part 2. Van der Waal’s Equation: (p ) Due to deviation from ideal behavior, corrections (adjustments) are made.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
The Gaseous State Chapter 12 Dr. Victor Vilchiz.
The Gaseous State Chapter 5.
Chapter 5: the Gaseous state
Chapter 11 Gases Copyright McGraw-Hill
Gases Chapters 12.1 and 13.
Gases 1.  Describe a gas sample. Describe the position and motion of atoms/molecules in a sample. Gases assume the volume and shape of their containers.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Gases and Liquids.
Chapter 5 Gases John A. Schreifels Chemistry 211.
Gases Chapter 5 Picture with cutout artistic effects (Intermediate)
Chapter 10 PHYSICAL CHARACTERISTICS OF GASES
Chapter 10 Gases No…not that kind of gas. Kinetic Molecular Theory of Gases Kinetic Molecular Theory of Gases – Based on the assumption that gas molecules.
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The Ideal Gas Law and Stoichiometry Chemistry 142 B Autumn Quarter, 2004 J. B. Callis, Instructor Lecture #14.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
The Gas Laws.
1 Molecular Composition of Gases Chapter Gay-Lussac’s law of combining volumes of gases At constant temperature and pressure, the volumes of gaseous.
Chapter 11 Gases.
Gases.  Define pressure, give units of pressure, and describe how pressure is measured.  State the standard conditions of temperature and pressure and.
Gas Notes I. Let’s look at some of the Nature of Gases: 1. Expansion – gases do NOT have a definite shape or volume. 2. Fluidity – gas particles glide.
Daniel L. Reger Scott R. Goode David W. Ball Chapter 6 The Gaseous State.
1 Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Review of Gases and the Gas Laws PV = nRT Kinetic Molecular Theory Postulates: A gas consists of a collection of small particles traveling in straight-line.
1 Chapter 5 The Gas Laws. 2 Pressure n Force per unit area. n Gas molecules fill container. –Molecules move around and hit sides. –Collisions are the.
Gases- Part 2 Gas Stoichiometry Dalton’s Partial Pressure Kinetic Molecular Theory Effusion and Diffusion Real Gases.
Now, a little more about Gases!. Boyle’s Law The volume of a gas is inversely related to the pressure at a constant temperature. P 1 V 1 = P 2 V 2.
The Gas Laws Chapter 9. Kinetic Molecular Theory 1. A gas is composed of small particles (molecules) that are spaced widely apart. Compressible Low density.
1 Material was developed by combining Janusa’s material with the lecture outline provided with Ebbing, D. D.; Gammon, S. D. General Chemistry, 8th ed.,
Gases Courtesy of nearingzero.net.
Chapter 5: Gases Renee Y. Becker Valencia Community College CHM
Gases Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Lecture Notes Alan D. Earhart Southeast Community College Lincoln, NE Chapter 9 Gases: Their Properties and Behavior John E. McMurry Robert C. Fay CHEMISTRY.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapter 9: Gases: Their Properties and Behavior
Gas Laws. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapter 5: Gases 5.1 Pressure. Gaseous State of Matter  has no distinct or __________ so fills any container  is easily compressed  completely with.
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapters 10 and 11: Gases Chemistry Mrs. Herrmann.
Gas Properties and Gas Laws Chapters Kinetic Molecular Theory of Gases An ideal gas is one that fits all the assumptions of this theory: 1) Gases.
Ch. 10 Gases. Properties Expand to fill their container Highly compressible Molecules are far apart.
Gases Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Chapter 5 – Gases. In Chapter 5 we will explore the relationship between several properties of gases: Pressure: Pascals (Pa) Volume: m 3 or liters Amount:
Gas Laws Chapter 10 CHEM140 February 2, Elements that exist as gases at 25 0 C and 1 atmosphere.
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
Gases Unit 6. Kinetic Molecular Theory  Kinetic energy is the energy an object has due to its motion.  Faster object moves = higher kinetic energy 
Gas Stoichiometry & Dalton’s Law of Partial Pressure.
1 Chapter 10 Gases Forestville Central School. 2 Properties of Gases Properties of Gases: 1. Gases have an indefinite shape. 2. Gases can expand. 3. Gases.
Gases All molecules move to some extent. –Vibrational –Rotational –Translational *
The Gas Laws u The gas laws describe HOW gases behave. u They can be predicted by theory. u The amount of change can be calculated with mathematical.
Gases Elements that exist as gases at 25 0 C and 1 atmosphere 5.1.
University of Nebraska-Lincoln
Practice Problems Chang, Chapter 5 Gasses. 5.2 Pressure of a Gas 1 Convert 749 mmHg to atmospheres.
Gases. Kinetic Theory of Gases Explains Gas behavior: 4 parts: 1) Gas particles do not attract or repel each other (no I.M. forces).
Gas Team Review Game. ?1 List all 5 parts of the Kinetic Molecular Theory. List all 5 parts of the Kinetic Molecular Theory.
Chapter Five Gases. Chapter Five / Gases Substances That Exist as Gases Element in blue are Gases Noble gases are monatomic All other gases (H 2, N 2,
DO NOW List 5 gases that you can think of without the aide of a book. Classify these gases are either elements, compounds or mixtures. Explain your classifications.
Gases AP Chemistry Mr. G. All matter follows the KMT: Kinetic Molecular Theory KMT- the tiny particles in all forms of matter are in constant motion.
Chemistry Chapter 5 Gases Dr. Daniel Schuerch. Gas Pressure Gas pressure is the result of simultaneous collisions of billions of rapidly moving particles.
Gas Laws.
Chapter 2 Gases COURSE NAME: CHEMISTRY 101 COURSE CODE:
Chapter 14 – Gas Laws.
Chapter 5 – AP Chemistry Gases.
Chemistry 1411 Joanna Sabey
Presentation transcript:

Chapter 5 – AP Chemistry Gases

Substances that Exist as Gases at 1atm and 25 C Elements H2 N2 O2 F2 Cl2 He Ne Ar Kr Xe Rn Compounds HF HCl HBr HI CO CO2 NH3 NO NO2 N2O SO2

All Gases have the following Physical Properties Assume the volume and shape of their containers Are the most compressible of the states of matter Will mix evenly and completely when confined to the same container Have much lower densities than liquids and solids

Pressure of a Gas Gases exert pressure on any surface with which they come into contact Example of atmospheric pressure The ability to drink liquid through a straw Sucking air out of the straw reduces the pressure inside the straw Therefore the greater atmospheric pressure on the liquid pushes it up into the straw to replace the air that has been sucked out

Atmospheric Pressure The pressure exerted by Earth’s atmosphere Atoms and molecules are subjected to earth’s gravitational pull Therefore, the atmosphere is much denser near the surface of the earth The denser the air is the greater the pressure

Air Gases are fluid Pressure exerted on an object in a fluid comes from all directions Air pressure at the molecular level results from collisions between air molecules and any surface with which they come into contact with The magnitude of pressure depends on how often and how strongly the molecules impact the surface

Gas Laws Boyle’s Law Charles’s Law Gay – Lussac’s Law Combined Gas Law P1V1 = P2V2 Charles’s Law V1/T1 = V2/T2 Gay – Lussac’s Law P1/T1 = P2/T2 Combined Gas Law P1V1/T1 = P2V2/T2

Combined Gas Law A small bubble rises from the bottom of a lake, where the temperature and pressure are 8 degrees Celsius and 6.4atm, to the water’s surface, where the temperature is 25 degrees Celsius and pressure is 1.0 atm. Calculate the final volume of the bubble if its initial volume was 2.1ml.

Ideal Gas Law PV=nRT R = .0821L*atm/K*mol Volume in L Pressure in atm n in moles Temperature in Kelvin Sulfur hexafluoride is a colorless, odorless, very unreactive gas. Calculate the pressure exerted by 84g of the gas in a steel vessel of a volume 6.09L and 55 degrees Celcius.

Ideal Gas Law Calculate the volume occupied by 14.2g of NH3 at STP. (Hint 22.4L = 1mol)

Gas Stoichiometry Same a basic reaction chemistry Please note: 1mole = 22.4L can only be used when the chemical reaction is at STP If the reaction is at STP, after moles of the unknown are calculated, then the moles can be converted to liters If the reaction is NOT at STP then you must use ideal gas law to solve for volume

Gas Stoich Problems Sodium Azide (NaN3) is used in some automobile air bags. The impact of a collision triggers the decomposition of NaN3. The nitrogen gas produced quickly inflates the bag between the driver and the windshield and dashboard. Calculate the volume of N2 generated at 85 degrees Celsius and 812mmHg by decomposition of 50g NaN3.

Gas Stoich The breakdown on glucose is below. Calculate the volume of CO2 produced at 37 degrees and .5atm when 5.6g of glucose is used to completion in this reaction C6H12O6 + O2 → CO2 + H2O

Dalton’s Law of Partial Pressures Dalton's law of partial pressures states that the total pressure exerted by a gaseous mixture is equal to the sum of the partial pressures of each individual component in a gas mixture.

Dalton’s Law of Partial Pressure Calculation of the moles of each gas based on the partial pressures For example two gases in a container (nitrogen and oxygen) P = Pnitrogen + Poxygen Then you can use ideal gas law to calculate the moles of each gas Pnitrogen V = nnitrogen R T Poxygen V = noxygen R T Please note you can always use the equations backwards. Start with moles of each to find partial pressures, then find the total pressure

Dalton’s Law Problems Quiz Problem Oxygen gas is generated by the decomposition of potassium chlorate in wate vapor chamber. The volume of oxygen gas collected at 26 degrees Celsius is 752ml and the atmospheric pressure is 1841mmHg. The pressure of the water vapor at 26 degrees Celsius is 25.2 mmHg. Calculate the mass of oxygen obtained.

Dalton’s Law of Partial Pressures Mole Fraction The mole fraction that express the ratio of the number of moles of one component to the number of moles of all components present By using mole fraction you can calculate the partial pressure of each gas in a system Pi = XiPT Xi -Is the percent of each molar amount of each gas (part over whole)

Dalton’s Law Problems A mixture of gases contain 3.85 moles of Ne, 0.92 moles of argon and 2.59 moles of xenon. Calulate the partial pressure of each gas if the total pressure is 2.50atm.

Kinetic Molecular Theory of Gases A gas consists of a collection of small particles traveling in straight-line motion and obeying Newton's Laws. The molecules in a gas occupy no volume (that is, they are points). Collisions between molecules are perfectly elastic (that is, no energy is gained or lost during the collision). There are no attractive or repulsive forces between the molecules. The average kinetic energy of a molecule is 3kT/2. (T is the absolute temperature and k is the Boltzmann constant.)

Root Mean Squared To calculate how fast a molecule moves at any given temperature R = 8.314J/K*mol M = (molar mass in Kg/mol) U = calculated in meters per second

Root Mean Squared Problem Calculate the root-mean squared speeds of helium atoms and nitrogen molecules in m/s at 25 degrees Celsius

Gas Diffusion and Effusion Diffusion – the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties Effusion – the process by which a gas under pressure escapes from one compartment of a container to another by passing through a small opening

Graham’s law of Diffision A flammable gas made up only of carbon and hydrogen is found to effuse through a porous barrier in 3.5min. Under the same conditions of temperature and pressure, it takes an equal volume of chlorine gas 7.34 min to effuse through the same barrier. Calculate the molar mass of the unknown gas and suggest what this gas might be.

Deviation from Ideal Behavior

Van der Waals

AP Questions 2 H2O2(aq) → 2 H2O(l) + O2(g) The mass of an aqueous solution of H2O2 is 6.951 g. The H2O2 in the solution decomposes completely according to the reaction represented above. The O2(g) produced is collected in an inverted graduated tube over water at 23.4°C and has a volume of 182.4 mL when the water levels inside and outside of the tube are the same. The atmospheric pressure in the lab is 762.6 torr, and the equilibrium vapor pressure of water at 23.4°C is 21.6 torr. (a) Calculate the partial pressure, in torr, of O2(g) in the gas-collection tube. (b) Calculate the number of moles of O2(g) produced in the reaction. (c) Calculate the mass, in grams, of H2O2 that decomposed. (d) Calculate the percent of H2O2 , by mass, in the original 6.951 g aqueous sample.

AP Questions A rigid 5.00 L cylinder contains 24.5 g of N2(g) and 28.0 g of O2(g) (a) Calculate the total pressure, in atm, of the gas mixture in the cylinder at 298 K. (b) The temperature of the gas mixture in the cylinder is decreased to 280 K. Calculate each of the following. (i) The mole fraction of N2(g) in the cylinder. (ii) The partial pressure, in atm, of N2(g) in the cylinder. (c) If the cylinder develops a pinhole-sized leak and some of the gaseous mixture escapes, would the ratio   in the cylinder increase, decrease, or remain the same? Justify your answer. A different rigid 5.00 L cylinder contains 0.176 mol of NO(g) at 298 K. A 0.176 mol sample of O2(g) is added to the cylinder, where a reaction occurs to produce NO2(g). (d) Write the balanced equation for the reaction. (e) Calculate the total pressure, in atm, in the cylinder at 298 K after the reaction is complete.

AP Questions A mixture of H2(g), O2(g), and 2 millilitres of H2O(l) is present in a 0.500 litre rigid container at 25°C. The number of moles of H2 and the number of moles of O2 are equal. The total pressure is 1,146 millimetres mercury. (The equilibrium vapor pressure of pure water at 25°C is 24 millimetres mercury.) The mixture is sparked, and H2 and O2 react until one reactant is completely consumed. (a) Identify the reactant remaining and calculate the number of moles of the reactant remaining. (b) Calculate the total pressure in the container at the conclusion of the reaction if the final temperature is 90°C. (The equilibrium vapor pressure of water at 90°C is 526 millimetres mercury.) (c) Calculate the number of moles of water present as vapor in the container at 90°C.