Structure of DNA. Polymerase Chain Reaction - PCR PCR amplifies DNA –Makes lots and lots of copies of a few copies of DNA –Can copy different lengths.

Slides:



Advertisements
Similar presentations
Polymerase Chain Reaction (PCR) and its Applications.
Advertisements

Polymerase Chain Reaction (PCR)
PCR way of copying specific DNA fragments from small sample DNA material "molecular photocopying" It’s fast, inexpensive and simple Polymerase Chain Reaction.
Polymerase Chain Reaction (PCR). PCR produces billions of copies of a specific piece of DNA from trace amounts of starting material. (i.e. blood, skin.
Genomic DNA extraction from whole blood
Polymerase chain reaction (PCR)
Lab 8: PCR (Polymerase Chain Reaction)
Introduction to DNA.
Genomic DNA purification
Biotechniques. Magnification DNA samples are often too small for effective study 2 methods of multiplying DNA samplePCR Cloning vectors.
The PCR The Polymerase Chain Reaction. The PCR is used to make copies of DNA (amplification). Whole genome OR DNA fragments.
The polymerase chain reaction (PCR) rapidly
ZmqqRPISg0g&feature=player_detail page The polymerase chain reaction (PCR)
DNA Replication DNA mRNA protein transcription translation replication Before each cell division the DNA must be replicated so each daughter cell can get.
Polymerase chain reaction
Polymerase Chain Reaction
WORKSHOP (1) Presented by: Afsaneh Bazgir Polymerase Chain Reaction
Polymerase Chain Reaction (PCR) and its Applications.
Recombinant DNA Technology………..
Genetics Techniques: RFLP & PCR AP Biology Unit 3.
Polymerase Chain Reaction (PCR)
What do these terms mean to you? You have 5 min to discuss possible meanings and examples with your group! DNA sequencing DNA profiling/fingerprinting.
Qai Gordon and Maddy Marchetti. What is Polymerase Chain Reaction? Polymerase Chain Reaction ( PCR ) is a process that amplifies small pieces of DNA to.
POLYMERASE CHAIN REACTION. DNA Structure DNA consists of two molecules that are arranged into a ladder-like structure called a Double Helix. A molecule.
The Polymerase Chain Reaction
Chapter 14: DNA Amplification by Polymerase Chain Reaction.
Polymerase Chain Reaction PCR. PCR allows for amplification of a small piece of DNA. Some applications of PCR are in: –forensics (paternity testing, crimes)
What is the link?. Basically a DNA photocopier! A technique for the amplification of DNA in vitro (outside the body – like IVF).
Tina Doss Applied Biosystems
A technique to make a lot of DNA from only a little!
Polymerase Chain Reaction (PCR) Developed in 1983 by Kary Mullis Major breakthrough in Molecular Biology Allows for the amplification of specific DNA fragments.
POLYMERASE CHAIN REACTION (PCR) Bridges Polymerase Chain Reaction  Simple reaction  Produces many copies of a specific fragment of DNA  Live.
Success criteria - PCR By the end of this lesson we will be able to: 1. The polymerase chain reaction (PCR) is a technique for the amplification ( making.
The polymerase chain reaction
Nucleotides and Nucleic Acids. Cellular Processes DNA RNA (mRNA) Proteins LipidsCarbohydrates replication transcription translation.
The polymerase chain reaction
Polymerase Chain Reaction A process used to artificially multiply a chosen piece of genetic material. May also be known as DNA amplification. One strand.
Amplification of a DNA fragment by Polymerase Chain Reaction (PCR) Ms. Nadia Amara.
Polymerase Chain Reaction (PCR). PCRPCR PCR produces billions of copies of a specific piece of DNA from trace amounts of starting material. (i.e. blood,
PCR – Polymerase Chain Reaction A method of amplifying small amounts of DNA using the principles of DNA replication.
PCRPCR Presented by : Rana AL-Turki. 1- Definition of PCR. 2- Requirements for PCR. 3-PCR Process. 4-Procedure.
Introduction to PCR Polymerase Chain Reaction
Copying DNA: The Polymerase Chain Reaction. The Polymerase Chain Reaction (PCR) POINT > Explain why copying DNA is useful POINT > Define PCR POINT > Describe.
Lecturer: Bahiya Osrah Background PCR (Polymerase Chain Reaction) is a molecular biological technique that is used to amplify specific.
Rajan sharma.  Polymerase chain reaction Is a in vitro method of enzymatic synthesis of specific DNA sequences.  This method was first time developed.
I. PCR- Polymerase Chain Reaction A. A method to amplify a specific piece of DNA. DNA polymerase adds complementary strand DNA heated to separate strands.
Presented by: Khadija Balubaid.  PCR (Polymerase Chain Reaction) is a molecular biological technique  used to amplify specific fragment of DNA in vitro.
Polymerase Chain Reaction
Introduction to DNA, PCR and Gel Electrophoresis
Introduction to PCR Polymerase Chain Reaction
Success criteria - PCR By the end of this lesson we will be know:
Polymerase Chain Reaction
Polymerase Chain Reaction
PCR uses polymerases to copy DNA segments.
BIOTECHNOLOGY BIOTECHNOLOGY: Use of living systems and organisms to develop or make useful products GENETIC ENGINEERING: Process of manipulating genes.
Polymerase Chain Reaction
Polymerase Chain Reaction (PCR) technique
Polymerase Chain Reaction
Introduction to Bioinformatics II
PCR uses polymerases to copy DNA segments.
PCR uses polymerases to copy DNA segments.
Introduction to DNA.
Polymerase Chain Reaction (PCR)
PCR Polymerase chain reaction (PCR)
PCR uses polymerases to copy DNA segments.
Dr. Israa ayoub alwan Lec -12-
PCR uses polymerases to copy DNA segments.
PCR uses polymerases to copy DNA segments.
Polymerase Chain Reaction (PCR)
PCR uses polymerases to copy DNA segments.
Presentation transcript:

Structure of DNA

Polymerase Chain Reaction - PCR PCR amplifies DNA –Makes lots and lots of copies of a few copies of DNA –Can copy different lengths of DNA, doesn’t have to copy the whole length of a DNA molecule One gene Several genes Lots of genes

How PCR Works Reagents Needed –DNA sample which you want to amplify –DNA polymerase Taq DNA polymerase – Works at high temps –Nucleotides Called dNTPs –Pair of primers One primer binds to the 5’ end of one of the DNA strands The other primer binds to the 3’ end of the anti-parallel DNA strand Determine the region of DNA you want amplified –Water –Buffer

How PCR Works Protocol –Put all reagents into a PCR tube –Break the DNA ladder down the middle to create two strands, a 5’ to 3’ strand and a 3’ to 5’ strand Melting or heat denaturation –Bind each primer to its appropriate strand 5’ primer to the 5’ to 3’ strand 3’ primer to the 3’ to 5’ strand –Annealing –Copy each strand DNA polymerase –Extending

How PCR Works Temperature Protocol –Initial Melt: 94 º C for 2 minutes –Melt: 94 º C for 30 seconds –Anneal: 55 º C for 30 seconds –Extend: 72 º C for 1 minute –Final Extension: 72 º C for 6 minutes –Hold: 4 º C cycles

PCR The DNA, DNA polymerase, buffer, nucleoside triphosphates, and primers are placed in a thin-walled tube and then these tubes are placed in the PCR thermal cycler PCR Thermocycler

Heat-stable DNA Polymerase Given that PCR involves very high temperatures, it is imperative that a heat-stable DNA polymerase be used in the reaction. Most DNA polymerases would denature (and thus not function properly) at the high temperatures of PCR. Taq DNA polymerase was purified from the hot springs bacterium Thermus aquaticus in 1976 Taq has maximal enzymatic activity at 75  C to 80  C, and substantially reduced activities at lower temperatures.

Denaturation of DNA This occurs at 95 ºC mimicking the function of helicase in the cell.

Step 2 Annealing or Primers Binding Primers bind to the complimentary sequence on the target DNA. Primers are chosen such that one is complimentary to the one strand at one end of the target sequence and that the other is complimentary to the other strand at the other end of the target sequence. Forward Primer Reverse Primer

Step 3 Extension or Primer Extension DNA polymerase catalyzes the extension of the strand in the 5-3 direction, starting at the primers, attaching the appropriate nucleotide (A-T, C-G) extension

The next cycle will begin by denaturing the new DNA strands formed in the previous cycle

The Size of the DNA Fragment Produced in PCR is Dependent on the Primers The PCR reaction will amplify the DNA section between the two primers. If the DNA sequence is known, primers can be developed to amplify any piece of an organism’s DNA. Forward primer Reverse primer Size of fragment that is amplified

The DNA of interest is amplified by a power of 2 for each PCR cycle For example, if you subject your DNA of interest to 5 cycles of PCR, you will end up with 2 5 (or 64) copies of DNA. Similarly, if you subject your DNA of interest to 40 cycles of PCR, you will end up with 2 40 (or ) copies of DNA!

More about Primers PCR primers are short, single stranded DNA molecules (15-40 bp) They are manufactured commercially and can be ordered to match any DNA sequence Primers are sequence specific, they will bind to a particular sequence in a genome As you design primers with a longer length (15 → 40 bp), the primers become more selective. DNA polymerase requires primers to initiate replication

Selectivity of Primers Primers bind to their complementary sequence on the target DNA –A primer composed of only 3 letter, ACC, for example, would be very likely to encounter its complement in a genome. –As the size of the primer is increased, the likelihood of, for example, a primer sequence of 35 base letters repeatedly encountering a perfect complementary section on the target DNA become remote.

polymerase-chain-reaction.html