Introduction to Computer Graphics ColorColor. Specifying Color Color perception usually involves three quantities: Hue: Distinguishes between colors like.

Slides:



Advertisements
Similar presentations
13- 1 Chapter 13: Color Processing 。 Color: An important descriptor of the world 。 The world is itself colorless 。 Color is caused by the vision system.
Advertisements

CS 445 / 645 Introduction to Computer Graphics Lecture 13 Color Color.
2002 by Jim X. Chen: 1 Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology,
Color To understand how to make realistic images, we need a basic understanding of the physics and physiology of vision.
Achromatic and Colored Light CS 288 9/17/1998 Vic.
Fundamentals of Digital Imaging
University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2005 Tamara Munzner Color Week 5, Fri Feb.
School of Computing Science Simon Fraser University
CS 4731: Computer Graphics Lecture 24: Color Science
Multi-media Graphics JOUR 205 Color Models & Color Space 5 ways of specifying colors.
© 2002 by Yu Hen Hu 1 ECE533 Digital Image Processing Color Imaging.
What is color for?.
University of British Columbia CPSC 414 Computer Graphics © Tamara Munzner 1 Color 2 Week 10, Fri 7 Nov 2003.
COLOR and the human response to light
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
CS559-Computer Graphics Copyright Stephen Chenney Color Recap The physical description of color is as a spectrum: the intensity of light at each wavelength.
Color Models AM Radio FM Radio + TV Microwave Infrared Ultraviolet Visible.
Raster Graphics and Color
9/14/04© University of Wisconsin, CS559 Spring 2004 Last Time Intensity perception – the importance of ratios Dynamic Range – what it means and some of.
Understanding Colour Colour Models Dr Jimmy Lam Tutorial from Adobe Photoshop CS.
CS 376 Introduction to Computer Graphics 01 / 26 / 2007 Instructor: Michael Eckmann.
2001 by Jim X. Chen: 1 The purpose of a color model is to allow convenient specification of colors within some color gamut.
C O L O R S PRINT VS MULTIMEDIA. Main Difference Print –Primary Colors CMYK Cyan, Magenta, Yellow, Black - Subtractive Color system –Add together = black.
Color Management. How does the color work?  Spectrum Spectrum is a contiguous band of wavelengths, which is emitted, reflected or transmitted by different.
COLLEGE OF ENGINEERING UNIVERSITY OF PORTO COMPUTER GRAPHICS AND INTERFACES / GRAPHICS SYSTEMS JGB / AAS Light and Color Graphics Systems / Computer.
Chapter 3: Colorimetry How to measure or specify color? Color dictionary?
CS 445 / 645: Introductory Computer Graphics Color.
Color. Contents Light and color The visible light spectrum Primary and secondary colors Color spaces –RGB, CMY, YIQ, HLS, CIE –CIE XYZ, CIE xyY and CIE.
CS 445 / 645 Introduction to Computer Graphics Lecture 13 Color Color.
Color 2011, Fall. Colorimetry : Definition (1/2) Colorimetry  Light is perceived in the visible band from 380 to 780 nm  distribution of wavelengths.
Color Theory ‣ What is color? ‣ How do we perceive it? ‣ How do we describe and match colors? ‣ Color spaces.
Red, green and blue (RGB): RGB is another way to use 3 numbers to specify a color instead of using an intensity-distribution curve or HSB In addition.
CSC361/ Digital Media Burg/Wong
COLORCOLOR Angel 1.4 and 2.4 J. Lindblad
CS 376 Introduction to Computer Graphics 01 / 24 / 2007 Instructor: Michael Eckmann.
Graphics Lecture 4: Slide 1 Interactive Computer Graphics Lecture 4: Colour.
A color model is a specification of a 3D color co-ordinate system and a visible subset in the co-ordinate System within all colors in a particular color.
Digital Image Processing In The Name Of God Digital Image Processing Lecture6: Color Image Processing M. Ghelich Oghli By: M. Ghelich Oghli
CS 551 / 645: Introductory Computer Graphics Color.
Three-Receptor Model Designing a system that can individually display thousands of colors is very difficult Instead, colors can be reproduced by mixing.
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
Introduction to Computer Graphics
EEL Introduction to Computer Graphics PPT12: Color models Yamini Bura – U
Color Models. Color models,cont’d Different meanings of color: painting wavelength of visible light human eye perception.
Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2003 Raster Graphics and Color Greg Humphreys University of Virginia CS 445, Fall 2003.
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
CS-321 Dr. Mark L. Hornick 1 Color Perception. CS-321 Dr. Mark L. Hornick 2 Color Perception.
David Luebke 1 2/5/2016 Color CS 445/645 Introduction to Computer Graphics David Luebke, Spring 2003.
Chapter 4: Color in Image and Video
David Luebke2/23/2016 CS 551 / 645: Introductory Computer Graphics Color Continued Clipping in 3D.
Computer Graphics: Achromatic and Coloured Light.
1 of 32 Computer Graphics Color. 2 of 32 Basics Of Color elements of color:
COMPUTER GRAPHICS CS 482 – FALL 2016 CHAPTER 28 COLOR COLOR PERCEPTION CHROMATICITY COLOR MODELS COLOR INTERPOLATION.
Color Models Light property Color models.
Half Toning Dithering RGB CMYK Models
Design Concepts: Module A: The Science of Color
Color Image Processing
Color Image Processing
COLOR space Mohiuddin Ahmad.
Color 2017, Fall.
Chapter 6: Color Image Processing
Color Image Processing
Color 2015, Fall.
Colour Theory Fundamentals
COMS 161 Introduction to Computing
Color Image Processing
Slides taken from Scott Schaefer
Color Model By : Mustafa Salam.
Color Models l Ultraviolet Infrared 10 Microwave 10
Color Theory What is color? How do we perceive it?
Presentation transcript:

Introduction to Computer Graphics ColorColor

Specifying Color Color perception usually involves three quantities: Hue: Distinguishes between colors like red, green, blue, etcHue: Distinguishes between colors like red, green, blue, etc Saturation: How far the color is from a gray of equal intensitySaturation: How far the color is from a gray of equal intensity Lightness: The perceived intensity of a reflecting objectLightness: The perceived intensity of a reflecting object Sometimes lightness is called brightness if the object is emitting light instead of reflecting it. In order to use color precisely in computer graphics, we need to be able to specify and measure colors. Color perception usually involves three quantities: Hue: Distinguishes between colors like red, green, blue, etcHue: Distinguishes between colors like red, green, blue, etc Saturation: How far the color is from a gray of equal intensitySaturation: How far the color is from a gray of equal intensity Lightness: The perceived intensity of a reflecting objectLightness: The perceived intensity of a reflecting object Sometimes lightness is called brightness if the object is emitting light instead of reflecting it. In order to use color precisely in computer graphics, we need to be able to specify and measure colors.

Combining Colors Additive (RGB) Shining colored lights on a white ball Subtractive (CMYK) Mixing paint colors and illuminating with white light

How Do Artists Do It? Artists often specify color as tints, shades, and tones of saturated (pure) pigments Tint: Gotten by adding white to a pure pigment, decreasing saturationTint: Gotten by adding white to a pure pigment, decreasing saturation Shade: Gotten by adding black to a pure pigment, decreasing lightnessShade: Gotten by adding black to a pure pigment, decreasing lightness Tone: Gotten by adding white and black to a pure pigmentTone: Gotten by adding white and black to a pure pigment Artists often specify color as tints, shades, and tones of saturated (pure) pigments Tint: Gotten by adding white to a pure pigment, decreasing saturationTint: Gotten by adding white to a pure pigment, decreasing saturation Shade: Gotten by adding black to a pure pigment, decreasing lightnessShade: Gotten by adding black to a pure pigment, decreasing lightness Tone: Gotten by adding white and black to a pure pigmentTone: Gotten by adding white and black to a pure pigment White Pure Color Black Grays Tints Shades Tones

HSV Color Space Computer scientists frequently use an intuitive color space that corresponds to tint, shade, and tone: Hue - The color we see (red, green, purple)Hue - The color we see (red, green, purple) Saturation - How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue)Saturation - How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue) Brightness (Luminance) - How bright is the color (how bright are the lights illuminating the object?)Brightness (Luminance) - How bright is the color (how bright are the lights illuminating the object?) Computer scientists frequently use an intuitive color space that corresponds to tint, shade, and tone: Hue - The color we see (red, green, purple)Hue - The color we see (red, green, purple) Saturation - How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue)Saturation - How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue) Brightness (Luminance) - How bright is the color (how bright are the lights illuminating the object?)Brightness (Luminance) - How bright is the color (how bright are the lights illuminating the object?)

Intuitive Color Spaces A top-down view of hexcone

HSV Color Space A more intuitive color space H = HueH = Hue S = SaturationS = Saturation V = Value (or brightness)V = Value (or brightness) A more intuitive color space H = HueH = Hue S = SaturationS = Saturation V = Value (or brightness)V = Value (or brightness) Value Saturation Hue

Precise Color Specifications Pigment-mixing is subjective --- depends on human observer, surrounding colors, lighting of the environment, etcPigment-mixing is subjective --- depends on human observer, surrounding colors, lighting of the environment, etc We need an objective color specificationWe need an objective color specification Light is electromagnetic energy in the 400 to 700 nm wavelength rangeLight is electromagnetic energy in the 400 to 700 nm wavelength range Dominant wavelength is the wavelength of the color we “see”Dominant wavelength is the wavelength of the color we “see” Excitation purity is the proportion of pure colored light to white lightExcitation purity is the proportion of pure colored light to white light Luminance is the amount (or intensity) of the lightLuminance is the amount (or intensity) of the light Pigment-mixing is subjective --- depends on human observer, surrounding colors, lighting of the environment, etcPigment-mixing is subjective --- depends on human observer, surrounding colors, lighting of the environment, etc We need an objective color specificationWe need an objective color specification Light is electromagnetic energy in the 400 to 700 nm wavelength rangeLight is electromagnetic energy in the 400 to 700 nm wavelength range Dominant wavelength is the wavelength of the color we “see”Dominant wavelength is the wavelength of the color we “see” Excitation purity is the proportion of pure colored light to white lightExcitation purity is the proportion of pure colored light to white light Luminance is the amount (or intensity) of the lightLuminance is the amount (or intensity) of the light

Electromagnetic Spectrum Visible light frequencies range between... Red = 4.3 x hertz (700nm)Red = 4.3 x hertz (700nm) Violet = 7.5 x hertz (400nm)Violet = 7.5 x hertz (400nm) Visible light frequencies range between... Red = 4.3 x hertz (700nm)Red = 4.3 x hertz (700nm) Violet = 7.5 x hertz (400nm)Violet = 7.5 x hertz (400nm) Figures 15.1 from H&B

Visible Light Hue = dominant frequency (highest peak) Saturation = excitation purity (ratio of highest to rest) Lightness = luminance (area under curve) Hue = dominant frequency (highest peak) Saturation = excitation purity (ratio of highest to rest) Lightness = luminance (area under curve) White Light Orange Light Figures from H&B

How well do we see color? What color do we see the best? Yellow-green at 550 nmYellow-green at 550 nm What color do we see the worst? Blue at 440 nmBlue at 440 nm Flashback: Colortables (colormaps) for color storage Which RGB value gets the most bits?Which RGB value gets the most bits? Can perceive color differences of 10 nm at extremes (violet and red) and 2 nm between blue and yellow Metamers – different energy radiations look like the same color Color perception also affected by surrounding light and adaptation What color do we see the best? Yellow-green at 550 nmYellow-green at 550 nm What color do we see the worst? Blue at 440 nmBlue at 440 nm Flashback: Colortables (colormaps) for color storage Which RGB value gets the most bits?Which RGB value gets the most bits? Can perceive color differences of 10 nm at extremes (violet and red) and 2 nm between blue and yellow Metamers – different energy radiations look like the same color Color perception also affected by surrounding light and adaptation

Just noticeable difference (JND) 128 fully saturated hues can be distinguished Cannot perceive hue differences with less saturated light. Sensitivity to changes in saturation for a fixed hue and brightness ranges from 16 to 23 depending on hue. Talked about representing intensities last lecture 128 fully saturated hues can be distinguished Cannot perceive hue differences with less saturated light. Sensitivity to changes in saturation for a fixed hue and brightness ranges from 16 to 23 depending on hue. Talked about representing intensities last lecture

Color Spaces Three types of cones suggests color is a 3D quantity. How to define 3D color space? Idea: Shine given wavelength ( ) on a screenShine given wavelength ( ) on a screen User must control three lasers producing three wavelengths (say R=700nm, G=546nm, and B=436nm)User must control three lasers producing three wavelengths (say R=700nm, G=546nm, and B=436nm) Adjust intensity of RGB until colors are identical Adjust intensity of RGB until colors are identical Note phosphors of TV are not perfect RGB emitters as the results to right demonstrateNote phosphors of TV are not perfect RGB emitters as the results to right demonstrate Three types of cones suggests color is a 3D quantity. How to define 3D color space? Idea: Shine given wavelength ( ) on a screenShine given wavelength ( ) on a screen User must control three lasers producing three wavelengths (say R=700nm, G=546nm, and B=436nm)User must control three lasers producing three wavelengths (say R=700nm, G=546nm, and B=436nm) Adjust intensity of RGB until colors are identical Adjust intensity of RGB until colors are identical Note phosphors of TV are not perfect RGB emitters as the results to right demonstrateNote phosphors of TV are not perfect RGB emitters as the results to right demonstrate

CIE Color Space No standard set of three wavelengths can be combined to generate all other wavelengths. The CIE (Commission Internationale d’Eclairage) defined three hypothetical lights X, Y, and Z with these spectra: Idea: any wavelength can be matched perceptually by positive combinations of X, Y, and Z No standard set of three wavelengths can be combined to generate all other wavelengths. The CIE (Commission Internationale d’Eclairage) defined three hypothetical lights X, Y, and Z with these spectra: Idea: any wavelength can be matched perceptually by positive combinations of X, Y, and Z x ~ R y ~ G z ~ B

CIE Color Space The gamut of all colors perceivable is thus a three- dimensional shape in X, Y, Z Color = xX + yY + zZ The gamut of all colors perceivable is thus a three- dimensional shape in X, Y, Z Color = xX + yY + zZ

CIE Chromaticity Diagram (1931) For simplicity, we often project to the 2D plane x + y + z = 1 x = x / (x+y+z) y = y / (x+y+z) z = 1 – x - y

RGB Color Space (Color Cube) Define colors with (r, g, b) amounts of red, green, and blue

YIQ Color Space YIQ is the color model used for color TV in America. Y is brightness, I (orange-cyan) & Q (green-magenta) are color Note: Y is the same as CIE’s YNote: Y is the same as CIE’s Y Result: Use the Y alone and backwards compatibility with B/W TV!Result: Use the Y alone and backwards compatibility with B/W TV! These days when you convert RGB image to B/W image, the green and blue components are thrown away and red is used to control shades of grey (usually)These days when you convert RGB image to B/W image, the green and blue components are thrown away and red is used to control shades of grey (usually) YIQ is the color model used for color TV in America. Y is brightness, I (orange-cyan) & Q (green-magenta) are color Note: Y is the same as CIE’s YNote: Y is the same as CIE’s Y Result: Use the Y alone and backwards compatibility with B/W TV!Result: Use the Y alone and backwards compatibility with B/W TV! These days when you convert RGB image to B/W image, the green and blue components are thrown away and red is used to control shades of grey (usually)These days when you convert RGB image to B/W image, the green and blue components are thrown away and red is used to control shades of grey (usually)

Converting Color Spaces Converting between color models can also be expressed as such a matrix transform: Note the relative unimportance of blue in computing the Y Converting between color models can also be expressed as such a matrix transform: Note the relative unimportance of blue in computing the Y

Perceptually Uniform Color Space Color space in which Euclidean distance between two colors in space is proportional to the perceived distance CIE, RGB, not perceptually uniformCIE, RGB, not perceptually uniform –Example with RGB –LUV was created to be perceptually uniform Color space in which Euclidean distance between two colors in space is proportional to the perceived distance CIE, RGB, not perceptually uniformCIE, RGB, not perceptually uniform –Example with RGB –LUV was created to be perceptually uniform

The CMY Color Model Cyan, magenta, and yellow are the complements of red, green, and blue We can use them as filters to subtract from whiteWe can use them as filters to subtract from white The space is the same as RGB except the origin is white instead of blackThe space is the same as RGB except the origin is white instead of black This is useful for hardcopy devices like laser printers If you put cyan ink on the page, no red light is reflectedIf you put cyan ink on the page, no red light is reflected Add black as option (CMYK) to match equal parts CMYAdd black as option (CMYK) to match equal parts CMY Cyan, magenta, and yellow are the complements of red, green, and blue We can use them as filters to subtract from whiteWe can use them as filters to subtract from white The space is the same as RGB except the origin is white instead of blackThe space is the same as RGB except the origin is white instead of black This is useful for hardcopy devices like laser printers If you put cyan ink on the page, no red light is reflectedIf you put cyan ink on the page, no red light is reflected Add black as option (CMYK) to match equal parts CMYAdd black as option (CMYK) to match equal parts CMY

Halftoning A technique used in newspaper printing Only two intensities are possible, blob of ink and no blob of ink But, the size of the blob can be varied Also, the dither patterns of small dots can be used A technique used in newspaper printing Only two intensities are possible, blob of ink and no blob of ink But, the size of the blob can be varied Also, the dither patterns of small dots can be used

Halftoning

Halftoning – dot size

Halftoning – Moire Patterns Repeated use of same dot pattern for particular shade results in repeated pattern Perceived as a moire patternPerceived as a moire pattern Instead, randomize halftone patternInstead, randomize halftone pattern Repeated use of same dot pattern for particular shade results in repeated pattern Perceived as a moire patternPerceived as a moire pattern Instead, randomize halftone patternInstead, randomize halftone pattern

Dithering Halftoning for color images