The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,

Slides:



Advertisements
Similar presentations
High Redshift Quasar Survey Survey Science Group Workshop, 2013 High1 Resort Yiseul Jeon, Myungshin Im, W.-K. Park, J. H. Kim, M. Karouzos, J.-W. Kim,
Advertisements

The W i d e s p r e a d Influence of Supermassive Black Holes Christopher Onken Herzberg Institute of Astrophysics Christopher Onken Herzberg Institute.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Marianne Vestergaard Dark Cosmology Centre, Copenhagen First Galaxies, Quasars, and GRBs, June Determining Black Hole Masses in Distant Quasars.
End of the Cosmic Dark Ages -- the First Galaxies and the Cosmic Renaissance Xiaohui Fan Steward Observatory The University of Arizona.
JWST Science 4-chart version follows. End of the dark ages: first light and reionization What are the first galaxies? When did reionization occur? –Once.
Motivation 40 orbits of UDF observations with the ACS grism Spectra for every source in the field. Good S/N continuum detections to I(AB) ~ 27; about 30%
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Molecular gas in the z~6 quasar host galaxies Ran Wang National Radio Astronomy Observatory Steward Observatory, University of Atrizona Collaborators:
The Most Distant Quasars: Probing the End of Cosmic Dark Ages Xiaohui Fan Steward Observatory The University of Arizona.
Quasar Luminosity Functions at High Redshifts Gordon Richards Drexel University With thanks to Michael Strauss, Xiaohui Fan, Don Schneider, and Linhua.
The Dark Age… before the stars, beyond the galaxies…
A Multiwavelength View of Powerful High-Redshift AGN Ohad Shemmer Penn State University ‘Active Galactic Nuclei: From Atoms to Black Holes’, Tel Aviv,
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Quasar & Black Hole Science for GSMT Central question: Why do quasars evolve?
GRBs as Probes of First Light and the Reionization History of the Universe D. Q. Lamb (U. Chicago) Conference on First Light and Reionization Irvine, CA,
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
Quasars and Other Active Galaxies
Dark Ages of Astronomy (Dark to Light) 2 Dark Ages z=1000 z=5.8 z=0.
Lecture 3: The Highest Redshift Quasars: Early Black Hole Evolution and the End of Reionization Xiaohui Fan AGN Summer School, USTC May 25, 2007 Background:
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Gravitational Waves from Massive Black-Hole Binaries Stuart Wyithe (U. Melb) NGC 6420.
New Puzzles in Supermassive Black Hole Evolution Charles L. Steinhardt IPMU, University of Tokyo October 14, 2010 Steinhardt & Elvis 2010, MNRAS, 402,
Active Galaxies Definition – –Amount of Energy –Type of Energy Non-thermal Polarized Other characteristics –Emission spectra Hydrogen – Balmer series &
Evolution of High-Redshift Quasars Xiaohui Fan University of Arizona Castel Gandolfo, Oct 2005 Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 25.
Supermassive Black Holes at the Centers of Galaxies Singles and Pairs using X-rays to study black holes disruption of stars by massive black holes pairs.
Frontiers in Science #7 Co-evolution of Galaxies and Massive Black Holes in the Universe Masayuki Akiyama (Astronomical Institute) 2009/11/25.
Scaling relations of spheroids over cosmic time: Tommaso Treu (UCSB)
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
Quasars at the Cosmic Dawn Yuexing Li Penn State University Main Collaborators: Lars Hernquist (Harvard) Volker Springel (Heidelberg) Tiziana DiMatteo.
The Growth of the Stellar Seeds of Supermassive Black Holes Jarrett Johnson (LANL, MPE) with Bhaskar Agarwal (MPE), Claudio Dalla Vecchia (MPE), Fabrice.
HOW WHAT Conclusions Barausse E., 2012, MNRAS, 423, 2533 De Rosa G., Decarli R., Walter F.,Fan X., Jiang L., Kirk J., Pasquali A., Rix H. W., 2011, ApJ,
GMT2010 Workshop 12 Years Ago, JWST (NGST) Deep Field Simulation (2’ x 2’) Im & Stockman (1998)
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
From Avi Loeb reionization. Quest to the Highest Redshift.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
Quasars and Other Active Galaxies
ALMA and the Formation of Galaxies Pierre Cox IAS, Orsay, France.
Copyright © 2010 Pearson Education, Inc. Chapter 16 Galaxies and Dark Matter Lecture Outline.
Radio astronomical probes of the 1 st galaxies Chris Carilli, Aspen, February 2008  Current State-of-the-Art: gas, dust, star formation in QSO host galaxies.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
The Formation and Evolution of Galaxies Michael Balogh University of Waterloo.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Quasar Surveys -- From Sloan to SNAP
Warm Dust in the Most Distant Quasars Ran Wang Department of Astronomy, Peking University, China.
The distant Universe and something about gravitational waves.
Chapter 25 Galaxies and Dark Matter. 25.1Dark Matter in the Universe 25.2Galaxy Collisions 25.3Galaxy Formation and Evolution 25.4Black Holes in Galaxies.
The M BH -  star relation at the highest redshifts Fabian Walter (MPIA)
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Galaxies with Active Nuclei
The Growth of Supermassive Black Holes
ALMA studies of the first galaxies
Xiaohui Fan University of Arizona June 21, 2004
Probing Cosmic Evolution with the Most Distant Quasars
Giant Clouds and Star Clusters in the Antennae
The Most Distant Quasars
Chris Carilli (NRAO) AAS06 NRAO 50th.
Black Holes in the Deepest Extragalactic X-ray Surveys
Observing Molecules in the EoR
Galaxies With Active Nuclei
Presentation transcript:

The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci, Walter, Carilli,Cox,Bertoldi,Omont,Brandt, Vestergaard, Jiang, Diamond-Stanic, et al. SDSS collaboration

questions 1.How to discover the most distant quasars in the Universe? 2.When did the earliest quasars and super-massive black holes appear in the Universe? 3.How were the “cosmic dark ages” ended by the first generation of galaxies and quasars?

End of cosmic dark ages  Hot Big Bang  Cosmic Dark Ages: no light no star, no quasar, universe dark; IGM atomic (neutral) and opaque to UV  First light: the first galaxies and quasars in the universe  End of cosmic dark ages: Universe lit up and heated up Dark --> light Neutral --> ionized (reionization)  today Courtesy: G. Djorgovski

Why Distant Quasars? –Existence of supermassive black holes (BHs) at the end of cosmic dark ages –BH accretion history in the Universe? –Relation of BH growth and galaxy evolution Evolution of Quasar Density molecular CO emission from z=6.42 quasar Detection of Gunn-Peterson Trough – Probing the cosmic reionization

The end of dark ages: Movie Courtesy of N. Gnedin

How to find the earliest and most distant quasars? They are extremely rare –One per 500 sq. deg at z>6 (M<-27) –Require the largest survey of the sky to catch them –Search for “red”, i-dropout objects in the Sloan Digital Sky Survey They are faint at high-redshift –Require deep follow-up spectroscopic observations –SDSS i-dropout survey: Candidate selection from SDSS Fellow-up observations mainly on four work-horse telescopes: APO 3.5m; KPNO 4-m; MMT; Keck

The Highest Redshift Quasars and Galaxies SDSS i-dropout Survey: –Completed in June 2006: 7600 deg 2 at z AB <20 –Twenty-five luminous quasars at z>5.7 –z max =6.42 –Cosmic age ~ 800 Myr –The first 6-7% of cosmic history Dropout and Ly  emission galaxies –z spec < 6.6 –z phot ~ GRBs – z=6.30

Massive black holes in early universe From SDSS i-dropout survey –Density declines by a factor of ~40 from between z~2.5 and z~6 Cosmological implication –M BH ~ M sun –M halo ~ M sun –rare, 5-6 sigma peaks at z~6 (density of 1 per Gpc 3) Assembly of massive dark matter halo environment? Assembly of supermassive BHs? Fan et al. 2004

How fast can a black hole grow? Quasars shine by converting potential energy to radiative energy when accreting gas: –Radiative efficiency of ~10% Quasar maximum accretion rate is limited by the presence of radiation pressure (Eddington limit) –At maximum accretion, e-folding timescale of quasar growth is ~40 million years Earliest quasars likely grew from “seed” black holes resulted from stellar collapse –Seed mass ~ M_sun To grow a billion solar mass BH needs about 20 e-folding time -> ~ 800 million years, non-stop The age of the universe at z~6 is ~800 million years –Barely enough time for quasars to grow, even non-stop from the big bang???

Surprise 1… How did black holes grow so quickly in the first billion years of the cosmic history? –New (astro)physical processes? Direct formation of intermediate mass BH? Much more efficient accretion? –How are the earliest quasars related to the earliest galaxies?

NV OI SiIV Ly a Ly a forest Rapid chemical enrichment in quasar vicinity High-z quasars and their environments mature early on The Lack of Evolution in Quasar Intrinsic Spectral Properties

Submm and CO observation of z=6.42 quasar: Co-formation of earliest BH and galaxies Strong submm source: –Dust T: 50K –Dust mass: 7x10 8 M sun –Star-formation rate of ~2000 M/yr Strong CO source –T kin ~ 100K –Gas mass: 2x10 10 M sun –gas, dust properties similar to those of the brightest local starburst galaxies Bertoldi et al.

High-resolution CO Observation of z=6.42 Quasar Spatial Distribution –Radius ~ 2 kpc –Two peaks separated by 1.7 kpc Velocity Distribution –CO line width of 280 km/s –Dynamical mass within central 2 kpc: ~ M_sun –Total bulge mass ~ M_sun < M-sigma prediction Small, star-forming galaxy hosted over-sized BH BH formed before complete galaxy assembly? Walter et al kpc VLA CO 3—2 map  60 km/s  Channel Maps

Lineless quasars: radio quiet BL Lac or quasars with no BLR? No emission line, radio-quiet quasars at z>4 –~1% of high-z quasars –No obvious low-z counterparts –No BL Lac signature –A separate population of quasars? Fan et al Ly  distribution Diamond-Stanic et al Lineless Quasars: EW(Ly  )<10 Log EW (Ly  )

Surprise II… The spectra of these earliest quasars look almost identical to those in the local universe –No evolution in spectral properties? –Mature quasars in a very young universe? –Black holes grew earlier in the universe?

reionization Gunn-Peterson (1965) effect deep HI absorption in high-z quasar spectrum prior to the end of reionization

First detection of Gunn-Peterson Effect

The Universe transforming from opaque to transparent at the end of cosmic dark ages transparent opaque

Implications of Complete Gunn-Peterson Trough G-P optical depth at z~6: –Small neutral fraction needed for complete G-P trough –By itself not indication that the object is beyond the reionization epoch The evolution of G-P optical depth: –Tracking the evolution of UV background and neutral fraction of the IGM –Probe the ending of reionization

The End of Reionization Optical depth evolution accelerated –z<5.7:  ~ (1+z) 4.5 –z>5.7:  ~ (1+z) >11 (1+z) 4.5 (1+z) 11 Evolution of Ionization State: Neutral fraction increases by >15 Mean-free-path of UV photons decreases by >10 Large variation in the IGM properties  z~6 marks the end of cosmic reionization Neutral fraction

Three stages Pre-overlap Overlap Post-overlap From Haiman & Loeb

What’s Next Faint quasar survey at z~6: –In deep SDSS stripe –Additional quasars at 1-2 mag fainter –Uses the upgraded MMT red channel -> new red-sensitive deep depletion CCD –Measures quasar luminosity function at z~6 –Probes the inhomogeneity of reionization by multiple line of sight Future IR-based quasars surveys: –On UKIRT, VISTA –Allows detection at z~8-9 JWST: –Probing the first light at z>10

Probing Reionization History WMAP