Star Birth How do stars form? What is the maximum mass of a new star? What is the minimum mass of a new star?

Slides:



Advertisements
Similar presentations
Star Formation Why is the sunset red? The stuff between the stars
Advertisements

Notes 30.2 Stellar Evolution
Lecture 20 Star Formation. Announcements Comet Lovejoy will be a late night/early morning object through the rest of the semester, so currently there.
Star Formation and the Interstellar Medium
Stellar Evolution Describe how a protostar becomes a star.
16.1 Stellar Nurseries Our goals for learning: – Where do stars form? – Why do stars form? © 2014 Pearson Education, Inc.
© 2010 Pearson Education, Inc. Chapter 16 Star Birth.
Chapter 16 Star Birth.
Chapter 16 Star Stuff Star Birth
Chapter 19.
The Birth of Solar Systems A solar system The disk condenses and dissipates Collapse of and interstellar cloud Formation of a protostar and disk.
Announcements Angel Grade update Friday April 2 Reading for next class: 17.4, chapter 18 Star Assignment 7, due Monday April 5 ÜDo Angel quiz, ÜAstronomy.
Ch. 9 The Lives of Stars from Birth through Middle Age The Cone Nebula Quick review of Tuesday’s lecture.
Star Formation A Star is Born.
ASTR100 (Spring 2008) Introduction to Astronomy Star Birth Prof. D.C. Richardson Sections
Star Formation A Star is Born.
Hydrostatic Equilibrium and the Sun’s Core:. Clicker Question: What does does ionized Helium, He II, contain? A: He nucleus only B: He nucleus and one.
The formation of stars Learning Objective: How do stars form?
Susan CartwrightOur Evolving Universe1 Star Birth n Most of the bright stars we see have lifetimes much less than the age of the Solar System l l star.
By Preston B & Kara P (picture of Protostar)
The Grouping of Stars in the H-R Diagram The Major Categories of Stars 1.The Main Sequence, 2.The Supergiants, 3.The Giants, 4.The White Dwarfs. Main Sequence.
STAR BIRTH. Guiding Questions Why do astronomers think that stars evolve? What kind of matter exists in the spaces between the stars? Where do new stars.
Copyright © 2009 Pearson Education, Inc. Chapter 12 Star Stuff.
Chapter 13: Star Stuff © 2015 Pearson Education, Inc.
We are “star stuff” because the elements necessary for life were made in stars.
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-33.
Star Formation. Introduction Star-Forming Regions The Formation of Stars Like the Sun Stars of Other Masses Observations of Brown Dwarfs Observations.
Copyright © 2010 Pearson Education, Inc. Life Cycle of the Stars.
Unit 5: Sun and Star formation part 2. The Life Cycle of Stars Dense, dark clouds, possibly forming stars in the future Young stars, still in their birth.
A105 Stars and Galaxies  This week’s units: 60, 61, 62, 4  News Quiz Today  Star Clusters homework due Thursday  2nd Exam on Thursday, Nov. 2 Today’s.
JP ©1 2 3 Stars are born, grow up, mature, and die. A star’s mass determines its lifepath. Let M S = mass of the Sun = ONE SOLAR MASS Stellar Evolution.
Chapter 19 Star Formation
Chapter 15: Star Formation and the Interstellar Medium.
Lecture Outline Chapter 13: Star Stuff © 2015 Pearson Education, Inc.
Astronomy 1020 Stellar Astronomy Spring_2015 Day-32.
Stellar Formation 1)Solar Wind/Sunspots 2)Interstellar Medium 3)Protostars 4)A Star is Born October 23, 2002.
Chapter 12 Star Stuff Star Birth Our goals for learning: How do stars form? How massive are newborn stars?
Star Formation Why is the sunset red? The stuff between the stars
Life Cycle of Stars Birth Place of Stars:
Chapter 30 Section 2 Handout
Star Birth AST 112 Lecture 9. Star Birth The Milky Way has billion stars. 2-3 stars born per year in our galaxy!
EARTH & SPACE SCIENCE Chapter 30 Stars, Galaxies, and the Universe 30.2 Stellar Evolution.
Chapter 12 Star Stuff Star Birth Our goals for learning: How do stars form? How massive are newborn stars?
Spiral Density waves initiate star formation. A molecular cloud passing through the Sagittarius spiral arm Gas outflows from super supernova or O/B star.
Chapter 11 The Interstellar Medium
Chapter 11 The Interstellar Medium
Star forming regions in Orion. What supports Cloud Cores from collapsing under their own gravity? Thermal Energy (gas pressure) Magnetic Fields Rotation.
Classificati on HR diagramStar clustersTermsLife cycle Life Cycles 2 $ 200 $ 200$200 $ 200 $400 $ 400$400 $ 400 $600 $ 600$600 $ 600 $ 600$600 $800.
© 2010 Pearson Education, Inc. Chapter 16 Star Birth.
Copyright © 2012 Pearson Education, Inc. Chapter 12 Star Stuff.
Stellar NurseriesStages of Star Birth. The interstellar medium The space between the stars is not empty.
The Formation of Stars. I. Making Stars from the Interstellar Medium A. Star Birth in Giant Molecular Clouds B. Heating By Contraction C. Protostars D.
H205 Cosmic Origins  Today: The Origin of Stars  Begin EP 6  Tuesday Evening: John Mather  7:30 Whittenberger APOD.
Star Formation The stuff between the stars Nebulae Giant molecular clouds Collapse of clouds Protostars Reading
Stellar Evolution Chapters 16, 17 & 18. Stage 1: Protostars Protostars form in cold, dark nebulae. Interstellar gas and dust are the raw materials from.
12.1 Star Birth Our Goals for Learning How do stars form? How massive are newborn stars?
Stellar Birth Dr. Bill Pezzaglia Astrophysics: Stellar Evolution 1 Updated: 10/02/2006.
Stars, Galaxies, and the Universe Section 2 Section 2: Stellar Evolution Preview Objectives Classifying Stars Star Formation The Main-Sequence Stage Leaving.
Star Birth.
Stellar Evolution Chapters 16, 17 & 18.
Star Birth © 2014 Pearson Education, Inc..
Homework #8 1) Suppose a comet of mass 2000 kg smashed into the Sun. It was measured to be traveling at 10 km/s. How much momentum was transferred to.
Outline of Ch 11: The H-R Diagram (cont.)
Chapter 11 The Interstellar Medium
Announcements Observing sheets due today (you can hand them in to me).
Nebula By: Mckayla Morrison.
The Life Cycle of Stars Starry, Starry Night.
You can often predict how a baby will look as an adult by looking at other family members. Astronomers observe stars of different ages to infer how stars.
Stellar Evolution Chapter 30.2.
How do stars form?. We are “star stuff” because the elements necessary for life were made in stars.
Presentation transcript:

Star Birth How do stars form? What is the maximum mass of a new star? What is the minimum mass of a new star?

How do stars form?

Star-Forming Clouds Stars form in dark clouds of dusty gas in interstellar space. The gas between the stars is called the interstellar medium.

Gravity Versus Pressure Gravity can create stars only if it can overcome the force of thermal pressure in a cloud. Gravity within a contracting gas cloud becomes stronger as the gas becomes denser. Its called a molecular cloud because the Hydrogen is cool enough in the form H 2 molecules.

Mass of a Star-Forming Cloud A typical molecular cloud (T~ 30 K, n ~ 300 particles/cm 3 ) must contain at least a few hundred solar masses for gravity to overcome pressure. The cloud can prevent a pressure buildup as it collapses by converting thermal energy into infrared and radio photons that are radiated away to cool the cloud.

Fragmentation of a Cloud This simulation begins with a turbulent cloud containing 50 solar masses of gas.

Fragmentation of a Cloud The random motions of different sections of the cloud cause it to become lumpy.

Fragmentation of a Cloud Each lump of the cloud in which gravity can overcome pressure can go on to become on or more stars. A large cloud can make a whole cluster of stars containing thousands or millions of stars.

Glowing Dust Grains As stars begin to form, dust grains that absorb visible light heat up and emit infrared light. So we can find new stars by using and infrared telescope.

Glowing Dust Grains Long-wavelength infrared light is brightest from regions where many stars are currently forming.

Thought Question What would happen to a contracting cloud fragment if it were not able to radiate away its thermal energy? A. It would continue contracting, but its temperature would not change. B. Its mass would increase. C. Its internal pressure would increase.

Solar system formation is a good example of star birth. Recall the Nebula Model of the Solar System.

Cloud heats up as gravity causes it to contract due to conservation of energy. Contraction can continue if thermal energy is radiated away.

As gravity forces a cloud to become smaller, it begins to spin faster and faster, due to conservation of angular momentum.

As gravity forces a cloud to become smaller, it begins to spin faster and faster, due to conservation of angular momentum. Gas settles into a spinning disk because spin hampers collapse perpendicular to the spin axis.

Rotation of a contracting cloud speeds up for the same reason a skater speeds up as she pulls in her arms. Collapse of the Solar Nebula

Collisions between particles in the cloud cause it to flatten into a disk. Flattening

Collisions between gas particles also reduce up and down motions. Why Does the Disk Flatten?

Formation of Jets Rotation also causes jets of matter to shoot out along the rotation axis. These are probably due to magnetic fields in the new star. We usually only see these jets in new stars.

Jets are observed coming from the centers of disks around protostars. A protostar is the name we give a star that is just forming … i.e. it has not yet reached the main sequence. The initial disk that forms around the star is called a protostellar disk (also sometimes called a protoplanetary disk).

Thought Question What would happen to a protostar that formed without any rotation at all? A. Its jets would go in multiple directions. B. It would not have planets. C. It would be very bright in infrared light. D. It would not be round.

Protostar to Main Sequence A protostar contracts and heats until the core temperature is sufficient for hydrogen fusion. Contraction ends when energy released by hydrogen fusion balances energy radiated from the surface. It takes 30 million years for a star like the Sun (less time for more massive stars). Before it reaches the main sequence the cloud\protostar has a larger radius (it is collapsing) and a lower temperature (fusion has not started yet) than it will have on the main sequence. So it must approach the main sequence from the right hand side of the HR diagram.

Summary of Star Birth 1.Gravity causes gas cloud to shrink and fragment. 2.Cores of shrinking cloud fragments heat up. 3.Collapse only continues if the cloud cools by radiating away heat. 4.If the initial cloud was spinning a protostellar disk is formed. 5.Protostars approach the main sequence from the right hand side of the HR diagram. 6.Jets can be formed as the protostar collapses. 7.When core gets hot enough, fusion H to He begins and stops the collapse. 8.New star achieves long-lasting state of balance on the Main Sequence (i.e. the thermostat model that we discussed for the Sun where the rate of nuclear fusion produced sufficient thermal gas pressure to resist gravitational collapse).

How massive are newborn stars?

A cluster of many stars can form out of a single cloud.

Very massive stars are rare. Low-mass stars are common. Only about 1 in 200 stars is an O type star, whereas 90% of all stars are either spectral type K or M.

Upper Limit on a Star’s Mass Photons of light exert a slight amount of pressure when they strike matter. Very massive stars are so luminous that the collective pressure of photons drives their matter into space. Hence very large stars are not stable and quickly fall apart do to photon pressure.

Upper Limit on a Star’s Mass Models of stars suggest that radiation pressure limits how massive a star can be without blowing itself apart. Observations have not found stars more massive than about 300M Sun.

Lower Limit on a Star’s Mass Fusion will not begin in a contracting cloud if some sort of force stops contraction before the core temperature rises above 10 7 K. Thermal pressure cannot stop contraction because the star is constantly losing thermal energy from its surface through radiation. Is there another form of pressure that can stop contraction?

Degeneracy Pressure: Laws of quantum mechanics prohibit two electrons from occupying the same state in the same place.

Thermal Pressure: Depends on heat content The main form of pressure in most stars Degeneracy Pressure: Particles can’t be in same state in same place Doesn’t depend on heat content

Brown Dwarfs Degeneracy pressure halts the contraction of objects with <0.08M Sun before the core temperature becomes hot enough for fusion. Starlike objects not massive enough to start fusion are brown dwarfs.

Brown Dwarfs A brown dwarf emits infrared light because of heat left over from contraction. Its luminosity gradually declines with time as it loses thermal energy and cools.

Brown Dwarfs in Orion Infrared observations can reveal recently formed brown dwarfs because they are still relatively warm and luminous.

Stars more massive than 300M Sun would blow apart. Stars less massive than 0.08M Sun can’t sustain fusion.

Now you make work with your partner(s) on the homework that has just been given out.