Projectile Motion.

Slides:



Advertisements
Similar presentations
What is Projectile Motion?
Advertisements

Kinematic Equations and Projectile Motion
Section 3-5: Projectile Motion
7-2 Projectile Motion. Independence of Motion in 2-D Projectile is an object that has been given an intial thrust (ignore air resistance)  Football,
Chap 3 :Kinematics in 2D, 3D and Projectile Motion HW4: Chap.3:Pb.14,Pb.57, Pb.87 Chap 4:Pb.3, Pb.4, Pb.12, Pb.27, Pb. 37 Due Friday 26.
Projectile Motion. What Is It? Two dimensional motion resulting from a vertical acceleration due to gravity and a uniform horizontal velocity.
Chapter 4 Motion in Two Dimensions EXAMPLES. Example 4.1 Driving off a cliff. y i = 0 at top, y is positive upward. Also v yi = 0 How fast must the motorcycle.
Projectile Motion Neglecting air resistance, what happens when you throw a ball up from the back of a moving truck? Front? Behind? In?
Section 2 Extra Questions
Aim: How can we approach projectile problems?
2D Motion Principles of Physics. CAR Av = 2 m/sCAR Bv = 0 Both cars are the same distance above the ground, but Car A is traveling at 2 m/s and Car B.
Projectile Motion Questions.
Physics  Free fall with an initial horizontal velocity (assuming we ignore any effects of air resistance)  The curved path that an object follows.
Projectile Motion.
Copyright © 2009 Pearson Education, Inc. PHY093 – Lecture 2b Motion with Constant Acceleration 2 Dimensions 1.
CH10 – Projectile and Satellite Motion Projectiles Projectile Motion.
Motion in Two Dimensions
Kinematics in 2 Dimensions
Projectile Motion Lecturer: Professor Stephen T. Thornton.
Projectile Motion.
What is Projectile Motion?. Instructional Objectives: Students will be able to: –Define Projectile Motion –Distinguish between the different types of.
Projectile Motion Review
Do now A B + = ? The wrong diagrams Draw the right diagram for A + B.
Projectile Motion Neglecting air resistance, what happens when you throw a ball up from the back of a moving truck? Front? Behind? In? GBS Physics Demo.
What is Projectile Motion?
Projectiles.
3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola.
More Projectile Motion Discussion: Examples
Motion in Two or Three Dimensions
Projectile Motion. What Is It? Two dimensional motion resulting from a vertical acceleration due to gravity and a uniform horizontal velocity.
Chapter 3 Kinematics in Two Dimensions; Vectors. Units of Chapter 3 Vectors and Scalars Addition of Vectors – Graphical Methods Subtraction of Vectors,
Physics Lesson 6 Projectile Motion
1 PPMF101 – Lecture 4 Motions in 1 & 2 Dimensions.
Kinematics Kinematics – the study of how things move
Objectives: The student will be able to:
Projectiles (2D) A projectile is any object that is in a state of freefall, or in other words an object that is only acted upon by the force of gravity.
Vectors & Projectile Motion Chapter 3. Horizontal & Vertical Motion.
B2.2.  Projectiles follow curved (parabolic) paths know as trajectories  These paths are the result of two, independent motions  Horizontally, the.
Projectile Motion Examples. Example 3-6: Driving off a cliff!! y is positive upward, y 0 = 0 at top. Also v y0 = 0 v x = v x0 = ? v y = -gt x = v x0 t,
Chap. 3: Kinematics in Two or Three Dimensions: Vectors.
CHAPTER 6 MOTION IN 2 DIMENSIONS.
Motion in Two Dimensions. Projectile Motion: the motion of a particle that is projected or launched and only accelerated by gravity. cp: 5.
Motion in Two Dimensions. Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola.
Motion in Two Dimensions Chapter 7.2 Projectile Motion What is the path of a projectile as it moves through the air? Parabolic? Straight up and down?
Projectile Motion Falling things, and rockets ‘n’ that… AP Physics Unit 1 Oct 10 Lesson 2.
Projectile Motion.
Motion in Two Dimensions. (Ignore any effects from air resistance) A pickup is moving with a constant velocity and a hunter is sitting in the back pointing.
What is Projectile Motion?
Slide - 1 Fundamental of Physics Created by Dr. Eng. Supriyanto, M.Sc PARABOLIC MOTION.
Do Now A tennis ball is dropped from the top of a building. It strikes the ground 6 seconds after being dropped. How high is the building? (b) What is.
Continued Projectile Motion Practice 11/11/2013. Seed Question Six rocks with different masses are thrown straight upward from the same height at the.
Chapter 5 Review Projectile Motion.
AP PHYSICS Chapter 3 2-D Kinematics. 2-D MOTION The overriding principle for 2-Dimensional problems is that the motion can be resolved using vectors in.
To start Which hits the ground first? What assumptions are you making?
A football is kicked into the air at an angle of 45 degrees with the horizontal. At the very top of the ball's path, its velocity is _______. a. entirely.
PROJECTILE MOTION CHAPTER 3.5. PROJECTILE MOTION THE MOTION OF OBJECTS THROUGH THE AIR IN TWO DIMENSIONS.
What is Projectile Motion?. Instructional Objectives: Students will be able to: –Define Projectile Motion –Distinguish between the different types of.
Part 1 Projectiles launched horizontally
What is Projectile Motion?
3-7 Projectile Motion A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. Figure Caption:
What is Projectile Motion?
Projectile Review.
Chapter 4:Dynamics: Newton’s Law of Motion
Projectile Motion Unit 6.
What is Projectile Motion?
Projectile Motion.
Bellringer What is the difference between the words vertical and horizontal? What does the word projectile mean? How is one dimensional (1D), two dimensional.
Projectile Motion.
What is Projectile Motion?
Presentation transcript:

Projectile Motion

What is Projectile Motion?

Projectile Motion Two-dimensional motion of an object Vertical Horizontal

Types of Projectile Motion Horizontal Motion of a ball rolling freely along a level surface Horizontal velocity is ALWAYS constant Vertical Motion of a freely falling object Force due to gravity Vertical component of velocity changes with time Parabolic Path traced by an object accelerating only in the vertical direction while moving at constant horizontal velocity

Examples of Projectile Motion Launching a Cannon ball

Equations X- Component Y- Component Vectors Note: g= 9.8 m/s^2

Factors Affecting Projectile Motion What two factors would affect projectile motion? Angle Initial velocity Initial Velocity Angle

Class Exercise An object is fired from the ground at 100 meters per second at an angle of 30 degrees with the horizontal Calculate the horizontal and vertical components of the initial velocity After 2.0 seconds, how far has the object traveled in the horizontal direction? How high is the object at this point? How long will take for the object to hit the ground? How far will the object travel in the horizontal direction?

Solution Part a Part b Part c

3-7 Projectile Motion The speed in the x-direction is constant; in the y-direction the object moves with constant acceleration g. This photograph shows two balls that start to fall at the same time. The one on the right has an initial speed in the x-direction. It can be seen that vertical positions of the two balls are identical at identical times, while the horizontal position of the yellow ball increases linearly. Figure 3-21. Caption: Multiple-exposure photograph showing positions of two balls at equal time intervals. One ball was dropped from rest at the same time the other was projected horizontally outward. The vertical position of each ball is seen to be the same at each instant.

3-7 Projectile Motion If an object is launched at an initial angle of θ0 with the horizontal, the analysis is similar except that the initial velocity has a vertical component. Figure 3-22. Caption: Path of a projectile fired with initial velocity v0 at angle θ0 to the horizontal. Path is shown dashed in black, the velocity vectors are green arrows, and velocity components are dashed. The acceleration a = dv/dt is downward. That is, a = g = -gj where j is the unit vector in the positive y direction.

3-8 Solving Problems Involving Projectile Motion Projectile motion is motion with constant acceleration in two dimensions, where the acceleration is g and is down.

3-8 Solving Problems Involving Projectile Motion Example 3-6: Driving off a cliff. A movie stunt driver on a motorcycle speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave the cliff top to land on level ground below, 90.0 m from the base of the cliff where the cameras are? Ignore air resistance. Figure 3-23. Answer: The x velocity is constant; the y acceleration is constant. We know x0, y0, x, y, a, and vy0, but not vx0 or t. The problem asks for vx0, which is 28.2 m/s.

3-8 Solving Problems Involving Projectile Motion Example 3-7: A kicked football. A football is kicked at an angle θ0 = 37.0° with a velocity of 20.0 m/s, as shown. Calculate (a) the maximum height, (b) the time of travel before the football hits the ground, (c) how far away it hits the ground, (d) the velocity vector at the maximum height, and (e) the acceleration vector at maximum height. Assume the ball leaves the foot at ground level, and ignore air resistance and rotation of the ball. Figure 3-24. Answers: a. This can be calculated using vertical variables only, giving 7.35 m. b. The equation for t is quadratic, but the only meaningful solution is 2.45 s (ignoring the t = 0 solution). c. The x velocity is constant, so x = 39.2 m. d. At the highest point, the velocity is the (constant) x velocity, 16.0 m/s. e. The acceleration is constant, 9.80 m/s2 downward.

3-8 Solving Problems Involving Projectile Motion Conceptual Example 3-8: Where does the apple land? A child sits upright in a wagon which is moving to the right at constant speed as shown. The child extends her hand and throws an apple straight upward (from her own point of view), while the wagon continues to travel forward at constant speed. If air resistance is neglected, will the apple land (a) behind the wagon, (b) in the wagon, or (c) in front of the wagon? Figure 3-25. Response: The child throws the apple straight up from her own reference frame with initial velocity vy0 (Fig. 3–25a). But when viewed by someone on the ground, the apple also has an initial horizontal component of velocity equal to the speed of the wagon, vx0. Thus, to a person on the ground, the apple will follow the path of a projectile as shown in Fig. 3–25b. The apple experiences no horizontal acceleration, so vx0 will stay constant and equal to the speed of the wagon. As the apple follows its arc, the wagon will be directly under the apple at all times because they have the same horizontal velocity. When the apple comes down, it will drop right into the outstretched hand of the child. The answer is (b).

3-8 Solving Problems Involving Projectile Motion Conceptual Example 3-9: The wrong strategy. A boy on a small hill aims his water-balloon slingshot horizontally, straight at a second boy hanging from a tree branch a distance d away. At the instant the water balloon is released, the second boy lets go and falls from the tree, hoping to avoid being hit. Show that he made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance. Figure 3-26. Response: Both the water balloon and the boy in the tree start falling at the same instant, and in a time t they each fall the same vertical distance y = ½ gt2, much like Fig. 3–21. In the time it takes the water balloon to travel the horizontal distance d, the balloon will have the same y position as the falling boy. Splat. If the boy had stayed in the tree, he would have avoided the humiliation.

Applications

LAB TIME!!!