Brain Death Leanne Johnson-Meeter PA-C Department of Neurosurgery Gundersen Lutheran Medical Center 04/25/2013.

Slides:



Advertisements
Similar presentations
ITU Post Operative Monitoring – Up to 4 hours
Advertisements

Arterial Blood Gas Analysis
Why you do what you do? Nikki Dotson-Lorello RN, BSN, CCRN, CPTC Organ Recovery Coordinator LifeShare Of The Carolina s.
Brain Death: An Update on New Important Initiatives
Case 1 CR2 莊景勛 2007/08/28. Patient’s Profile Name: 林 X 琪 Gender: female Age: 14 years old Chart number: Arrival time: 2007/07/1, 16:42.
Brainstem death Paulus Anam Ong Department of Neurology.
BRAIN DEATH  Dr. Tabatabaeifar SM.  Professor of Neurosurgery  Shahid Beheshti University  Shohada Hospital  Mehrad Hospital  Dr. Tabatabaeifar.
Case Presentation: BLS to ALS Handoff 21 year old male Unrestrained driver, single vehicle MVC 20mph; sedan vs. concrete barrier No airbag Starred windshield.
Treat a Casualty with a Closed Head Injury. Combat Trauma Treatment 2Head Injury Introduction Most common for individuals working in hazardous environments.
Determination of Brain Death Donn Dexter, MD, FAAN Douglas T. Miller Symposium April 29, 2011.
SEVERE TRAUMATIC BRAIN INJURY A CASE REVIEW.
Brain Death Anatomy and Physiology
Traumatic Brain Injury Case Scenario Workshop Maurizio Berardino Neuroanesthesia and Intensive Care Neuroscience Department San Giovanni Battista Hospital.
Brain Death Jana Stockwell, MD.
Brain Death Nancy G. Hoover, MD. Background President’s Commission report  First formalized criteria for determination of brain death  Criteria.
 Consciousness refers to the normal level of wakefulness which is dependent upon the interaction of a functioning cerebral cortex and an intact reticular.
Organ Donation End of Life care in the Operating Room Matthew Bock Surgical recovery coordinator University of Wisconsin Organ Procurement Organization.
J. Prince Neelankavil, M.D.
An Overview of Head Injury Management Eldad J. Hadar, M.D. Department of Neurosurgery.
Brain Death Dr Gita Nath Consultant Anaesthetist
BRAIN DEATH Pediatric Critical Care Medicine Emory University Children’s Healthcare of Atlanta.
DEPARTMENT OF NEUROLOGY OSMANIA MEDICAL COLLEGE. American Academy of Neurology Guideline Update 2010.
Medical Aspects of Death. Death Cessation of life Is it event or process When does death actually occur? “Cellular Death” “Somatic Death”
Linda S. Williams / Paula D. Hopper Copyright © F.A. Davis Company Understanding Medical Surgical Nursing, 4th Edition Chapter 47 Neurological Function,
Increase Intracranial Pressure
PTC HEAD TRAUMA By Dr. Vashdev FCPS, Consultant Neuro and Spinal Surgeon & DEPARTMENT OF NEUROSURGERY LIAQUAT UNIVERSITY OF MEDICAL AND HEALTH SCIENCES.
Brain Death and Organ Donation
Respiratory Therapy! Just breathe!.
Arterial blood gas By Maha Subih.
Intracranial Pressure (ICP) Megan McClintock, MS, RN Megan McClintock, MS, RN11/4/11.
The Nervous System Sydnee Weinberg Mike Ramella Andora Leung Kunal Saxena.
Michelle Biros, MD Evaluation & Management of Severe Traumatic Brain Injury Patients with Suspected Elevated ICP.
CASE SIMULATION Debriefing. Diagnosis? Altered level of consciousness Respiratory insufficiency Acute subdural hematoma Possible inflicted traumatic brain.
Instructor Name: Title: Unit:
The Determination of Brain Death James Zisfein, M.D. Chief, Division of Neurology Lincoln Hospital, Bronx, NY.
Drowning Drowning defined as: death secondary to asphyxia and within 24 hours of submersion which may be immediate or follow resuscitation Submersion.
Coma and Brain Death. Objectives O Define Coma and altered consciousness O Understand the brain death exam.
HYPOTHERMIA n Dr. Josep Vidal Alaball. “No previously healthy person should die of hypothermia after he has been rescued and treatment has been started”
Post Resuscitation Care. To understand: The need for continued resuscitation after return of spontaneous circulation How to treat the post cardiac arrest.
Patient Assessment: Airway Evaluation Dr Aqeela Bano EMS 352.
Brain Death د/ عبد المنعم جودة مدبولى
Is the failure of pulmonary gas exchange to maintain the normal arterial O2 and CO2 level. It is divided in to type I and II in relation to the presence.
Definition of death Malta – No legal definition
By: Marian Liwanen THE BRAIN STEM.  The brainstem connects the cerebrum with the spinal cord.  It is sometimes called “the reptilian brain” and is the.
Increased Intracranial Pressure (ICP) Dr. Isazadehfar.
CRANIOCEREBRAL TRAUMA. Etiology/Pathophysiology HEAD INJURY Causes death or serious disability. Second most commom cause of neurological injuries. Major.
Approach to the comatose patient Stephen Lo. Introduction Focus on developing a structured approach to coma Can be also applied to exam questions.
Monitoring in Anesthesia Dr.Arkan Jaafar, M.D. Anesthesiologist,Medical college of Mosul.
Medical Aspects of Death
FIRST AID AND EMERGENCY CARE LECTURE 4 Vital Signs.
Jennifer L. Doherty, MS, LAT, ATC Management of Medical Emergencies
Management of Head Injuries
Online Module: Brain Death
Brain Death ISCCM FOUNDATION DAY.
Making a diagnosis of death
University of Wisconsin Organ Procurement Organization
Increased Intracranial Pressure (ICP)
Determination of Brain Death
Brain Death Leanne Johnson-Meeter PA-C Department of Neurosurgery
Case Study 24 y/o overdose with history of IVDA, found with needle in arm, & pronounced within 24 Hours of admission. Sharing Our Current Practices Hospital:
Ventilator Auto-Triggering and Brain Death
BRAIN DEATH IN NEONATES
Ethics in terminally ill patient II
Cardiac arrest & Reactivation
BRAIN DEATH Assoc. Prof. Dr. SEVGİ BİLGEN
Increased Intracranial Pressure
Neuro-critical Transfers
Arterial blood gas By Maha Subih.
Neuro-critical Transfers
Presentation transcript:

Brain Death Leanne Johnson-Meeter PA-C Department of Neurosurgery Gundersen Lutheran Medical Center 04/25/2013

Disclaimer No financial relationships to disclose. All aspects surrounding coma and death are always taken seriously and handled professionally. Any humor injected is to lighten the mood of a dark topic.

Objectives Understand the definition of death. Through a case presentation, learn about the Neurologic examination and the steps necessary to determine brain death. Understand what the ancillary/confirmatory tests are to determine brain death. Understand modern era controversy in determining brain death.

Death Government UDDA: Uniform Determination of Death Act (1981) – An individual who has sustained either 1)irreversible cessation of circulatory and respiratory functions or 2)irreversible cessation of all functions of the entire brain, including the brain stem, is dead.

Midbrain (Mesencephalon) Connection: forebrain to the hindbrain Controls response to sight Eye movement Pupil dilation Hearing

Pons (Latin for “bridge”) Connection: communication and coordination center between the two hemispheres (right, left) and messages from brain to spinal cord Arousal Sleep

Medulla Connection: motor and sensory neurons from the midbrain and forebrain pass through the medulla and brain to spinal cord Autonomic functions: breathing, digestion, heart/blood vessel function, swallow/sneeze

Case Presentation 30 yo male, motorcycle collision, witnessed Highway speeds Unhelmeted Sustained severe TBI (traumatic brain injury) with a large scalp laceration, actively bleeding Brought by air ambulance to GL, trauma activation Scene GCS 3(T); E1M1V1 with a left “blown pupil” Right forearm fracture

Trauma patient: maximum effort toward concurrent resuscitation and diagnosis of multi-system injury: – Securing airway and breathing, circulation: BP support w/IVF, blood products, line placement (Art line, central line) – Determining further means of intervention: chest tube for pneumothorax, ICP monitor for head injury, etc.

GCS: Glasgow coma scale

BP: 85/46, HR 98, T 34.5 deg C (94.1 deg F) Potassium 3.2. Hemoglobin 8.2. Glucose 432 Trauma tox screen (urine): negative Etoh: 301 Head CT findings of severe head injury: basilar skull fracture (base of skull), Intraparenchymal bleeding, bilateral SDH (subdural hematomas) 3-4 mm, presence of brainstem blood, 2 mm hemorrhage Neurological examination: GCS 3T (1E, 1M, 1V) At this point, can you tell if this patient is brain dead?

Determining Brain Death 4 Approach Steps: – Establish irreversible and proximate causes of coma (i.e. Does the presentation of the patient result from/match the pattern of a severe neurologic injury? Is there anything present that potentially confounds this presentation?) – Achieve normal core temperature – Achieve normal systolic blood pressure – Perform neurologic examination

Determining Brain Death Step 1: Irreversible and Proximate Causes of Coma – Exclude drugs including etoh above the legal limit, sedatives (trauma tox screen) – No recent or persistent neuromuscular blocking agents – No severe electrolyte, acid-base, or endocrine disturbance Our patient: +etoh, K+ low, glucose high

Determining Brain Death Step 2: Achieve Normal Core Temperature – Core body temp >36 degrees C (96.8) – Use warming blanket or warm IVF if necessary Step 3: Achieve Normal Systolic Blood Pressure (BP) - systolic bp > 100 mmHg - fluid resuscitation and/or “pressors” medications used to elevated the blood pressure Our patient: temp 34.5 deg C (94.1 deg F), BP 85/46

Patient is taken to the ICU with continued management of multisystem trauma: – ICP monitor placed for real time monitoring of brain injury. ICP measuring in the mid 20s. Sedation (propofol, fentanyl) – Electrolyte/endocrine replacement/treatment – Blood pressure management initially with IVF’s, now requiring pressors, blood products – Ventilation continues to deliver adequate O2 to the brain, organs. +Pneumothorax requiring chest tube placement

Despite aggressive management of injuries continues over the next 48 hours: ICP 38, BP 198/110. The patient is on a hypertonic saline and labetalol gtt. AM lytes are normal, ventilation settings are unchanged On Day 4, the ICP exceeds 150 and then abruptly starts to fall into the 70’s. Simultaneously, BP exceeded 200 systolic, then abruptly falls into the 100’s systolic, requiring pressors to maintain

Now what?

Brain Death Exam Step 1: – Sedation/pain medication/any drugs that can/could interfere with neurological exam are discontinued for adequate period of time to clear the system No severe electrolyte, acid-base or endocrine disturbance

Step 2: Achieve Normal Core Temperature Core body temp >36 degrees C (96.8) Use warming blanket or warm IVF if necessary Step 3: Achieve Normal Systolic Blood Pressure (BP Systolic BP > 100 mmHg Fluid resuscitation and/or pressors to elevate the blood pressure Step 4: Perform the Neurological Examination Start with the ventilator: is the patient over-breathing the ventilator? Is there any motor response to painful stimulation?

Test Brainstem reflexes – Pupil reaction to light – Corneal reflex – Facial muscle movement to pain – Pharyngeal and tracheal reflexes (deep suction and ET tube movement or tonsil tickle with q-tip: gag, cough)

Doll’s eyes – Eye movements are absent Cold water calorics – Head of bed 30 degrees, 50+ mL of ice water irrigation of each ear canal with 5 mins observation and 5 mins between tests. If there is a ruptured Tympanic Membrane (Ear Drum) you must skip this ear

Apnea Test Apnea = breathing is suspended Goal of test is to determine if the patient can breathe without life support Creating an environment with the ventilator for the patient to spontaneously breathe (exchange gas)

. 1. Prerequisites: Core Temperature 36.5°C or 97°F Systolic blood pressure 100 mm Hg Corrected diabetes insipidus (Positive fluid balance) Normal PCO2 (Arterial PCO2 of mm Hg) 2. Preoxygenate with 100% O 2 for 30 minutes 3. Connect a pulse oximeter and disconnect the ventilator 4. Place a nasal cannula at the level of the carina and deliver 100% O 2, 8 L per minute 5. Look closely for respiratory movements (abdominal or chest excursions that produce adequate tidal volumes) 6. Measure PO 2, PCO 2, and pH after 10 minutes and reconnect the ventilator 7. If respiratory movements are absent and arterial PCO2 is 60 mm Hg (option: 20 mm Hg increase in PCO2 over a baseline normal PCO2), the apnea test result is positive (supports the diagnosis of brain death) Connect the ventilator if during testing the systolic blood pressure becomes < 90 mm Hg or the pulse oximeter indicates significant desaturation and cardiac arrhythmias are present: immediately draw an arterial blood sample and analyze ABG! 8. If PCO 2 is 60 mm Hg or PCO2 increase is > 20 mm Hg over baseline normal PCO2, the apnea test is positive [supports the clinical diagnosis of brain death] 9. If the PCO2 is < 60 mm Hg or PCO2 increase is < 20 mm Hg over baseline normal PCO2, the result is indeterminate and an additional confirmatory test can be considered

Trouble Shooting Scenarios Scenario 1: the patient “fails” the apnea test Scenario 2: the patient is too unstable to perform the apnea test Scenario 3: the patient’s primary injury is in the brainstem Scenario 4: the patient has a false eye on the right and has dense cataracts on the left

Controversy #1 If the patient’s primary injury is in the brainstem, can clinical brain death testing be performed? Example: 60 yo M with acute brainstem hemorrhage with an examination consistent with brain death

Ancillary Testing Recommended by the AAN (American Academy of Neurology) in uncertain situations and/or apnea test cannot be performed Examples: severe facial trauma, pre-existing pupillary abnormalities, toxic levels of drugs Severe pulmonary disease (resulting in retention of carbon dioxide)

Ancillary Testing Nuclear Flow Study (Cerebral Scintigraphy) – Injection of radionuclide tracers are used to establish flow or lack of flow to the brain – “Hollow Skull” sign

TCD Transcranial Dopplar – Ultrasound used to establish cerebral circulatory arrest – Pros: inexpensive, portable – Cons: requires an experienced operator and interpreter % of patients have inadequate bone windows with which to examine the brain’s circulatory system

Eeg: Electroencephalogram

EEG Brain tracing of activity, much like the EKG for the heart. Routinely used in Neurology for diagnosing/localizing seizure disorders, sleep disorders No brain activity (flat waves) is diagnostic of brain death

Cerebral Angiography

Contrast dye study to determine blood flow to the brain Dye is injected into the vessels of the brain by a small catheter Presence of dye = blood flow. Absence of dye = brain death

Case Presentation Going back to our trauma patient: 30 yo M with MCC, severe TBI. Let’s make him 75 years old, 125 kg, treat him with hypothermia for 3 days in addition to paralytic, sedation, and hypertonic saline gtt He’s now through the “3-5 day brain swelling phase” and Neurosurgery’s asked for an examination…

How do you start a car in cold weather?

Hypothermia changes everything… Metabolism, insulin levels, adrenaline, noradrenlaine, cortisol levels Cardiac renal and hematological function Pharmaceutical clearance and metabolism Causes an encephalopathy

Hypothermia More on pharmacology in the setting of hypothermia: – Cytochrome P450 activity is not only reduced, but the duration of this reduction is significant: 72 hours! – Sedatives, neuromuscular blockade – Further exacerbated in elderly patients and those with liver or kidney dysfunction

Hypothermia The effects of hypothermia on the physical examination: – In the time before hypothermia, absent pupillary reflexes and absent corneal reflexes predictions were made for grim/poor outcomes with high specificity – Now in the time of therapeutic hypothermia, care must be taken

Hypothermia Corneal reflexes, when absent, have been found to be less predictive of a poor outcome in the cooled neurological patient compared to the normothermic patient In one study the predictive value was 89% in cooled patients v. 100% in normothermic patients Pupillary reaction does not seem to change, but absent corneal reflexes is not as reliable

Hypothermia Motor response GCS (E,M,V) Reliability in predicting poor outcomes when hypothermia has been applied is less v. not reliable Uncertainty exists for the etiology: hypothermia itself v. prolonged effects of medications (sedatives, paralytics)

Imaging “Well, what did the CT / MRI scan show?” Everybody wants a picture… – If there were mild or moderate changes in specific sequences found on MRI scans in post-cardiac arrest patients treated with hypothermia, it did not mean that the patient didn’t ultimately have a good outcome – Severe changes were more predictive of outcome than the neurological examination, however (78% compared to 48%) – Imaging is not subject to vulnerability of hypothermia, may be another tool

Conclusion Brain death requires a systematic and thoughtful approach Recognition must be given to the effects of medications and hypothermia on the brain death examination Ancillary studies should be considered when there is doubt (based on resources, feasibility, cost) Careful discussion should occur with the family regarding timing (this may be a limiting factor)

~RIP~ Dying is like getting audited by the IRS-something that only happens to other people... until it happens to you. - JEROME P. CRABB