BE/APh161 – Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology.

Slides:



Advertisements
Similar presentations
Homeobox Genes Body organisation.
Advertisements

MCDB 4650 Hox Genes and Segment Identity. What establishes the initial anterior boundary of each Hox gene? a) combinations of gap gene products b) combinations.
1 * egg: generate the system * larva: eat and grow
Drosophila melanogaster 2.5mm Movie. The Life Cycle 1-2 weeks 36hr 60 hr 12 hr.
Genetic Model Organisms worm mouse fish yeast fruit fly weed.
Studying Segmentation Mutants in Balanced Stocks.
Lecture 5 Anterior Posterior axis formation: Cell Biology Bicoid is a morphogen.
MCDB 4650 Developmental Genetics in Drosophila
Pattern formation in drosophila Katja Nowick TFome and Transcriptome Evolution
Homeobox Genes Body organisation.
Announcements Exam this Wednesday: my “half” is 40%. Gerry Prody’s “half” is 60%. Exam regrade policy: if you have a question about how I graded an answer,
12 The Genetic Control of Development. Gene Regulation in Development Key process in development is pattern formation = emergence of spatially organized.
Chapter 13 Genetic Control of Development Jones and Bartlett Publishers © 2005.
1 * egg: generate the system * larva: eat and grow
Lecture 6 Anterior posterior axis formation-the posterior signal Anterior posterior axis formation-down the hierarchy.
9.17 Generalized model of Drosophila anterior-posterior pattern formation (Part 1)
Embryonic Development & Cell Differentiation. During embryonic development, a fertilized egg gives rise to many different cell types Cell types are organized.
Anterior-posterior patterning in Drosophila
Chapter 9 - Axis specification in Drosophila Drosophila genetics is the groundwork for _______________l genetics Cheap, easy to breed and maintain Drosophila.
Embryonic Development
Chapter 19 Cellular Mechanisms of Development
Animal Development By Natasha Guenther, Brea Altoya, and Bianca (I can’t spell her last name so I’m leaving it out)
Chapters 19 - Genetic Analysis of Development: Development Development refers to interaction of then genome with the cytoplasm and external environment.
Embryonic development OvumFertilised ovum Cell Division.
Drosophila anterior-posterior axis formation during early embryogenesis Genetics Unit Department of Biochemistry
CHAPTER 21 THE GENETIC BASIS OF DEVELOPMENT Section A: From Single Cell to Multicellular Organism 1.Embryonic development involves cell division, cell.
The Genetics of Axis Specification in Drosophila
Chapter 21 The Genetic Basis of Development. Introduction The development of a multicellular organism from a single cell is one of the most fascinating.
© 2011 Pearson Education, Inc. Ch 21 Introduction How does a single fertilized egg cell develop into an embryo and then into a baby and eventually an adult?
Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism.
Chapters 47 & 21 Animal Development & The Genetic Basis of Development.
Robustness in biology Eörs Szathmáry Eötvös University Collegium Budapest.
Gap genes also encode TFs They regulate each other’s txn: Ex: Hb represses txn of Kr, helping to refine anterior boundary of Kr expression. They also regulate.
Genetics of Axis Specification in Drosophila Part 1 - Basics of Drosophila Embryogenesis Gilbert - Chapter 9.
 An organism’s development is planned by a genetic program involving the genome of the zygote and the molecules placed in the egg by the mother › These.
Gene Expression and Development II. Final Exam Sunday, May 27, 8:30-11:30 a.m. Here – SMC A110 Please do course evaluations!
Development and Genes Part 1. 2 Development is the process of timed genetic controlled changes that occurs in an organism’s life cycle. Mitosis Cell differentiation.
PRINCIPLES OF EMBRYONIC DEVELOPMENT © 2012 Pearson Education, Inc.
Chapters 19 - Genetic Analysis of Development:
Objective 7 TSWBat recognize the basic steps on the embryonic development of organisms and the role that gene expression plays in that development.
Genes and Body plans How does an organism become a zygote
Development of a complex multicellular organism is more than just mitosis- we certainly do not look like gigantic fertilized eggs. Zygote -> many specialized.
A Fly by Any Other Name …. Segmentation of Larvae.
Fate Mapping → Lineage tracing is the identification of all progeny of a single cell. Although its origins date back to developmental biology of invertebrates.
Genes & Development Packet #26.
Origins of anterior –posterior polarity in Drosophila Melanogaster
Genes and Body plans
Chapters 19 - Genetic Analysis of Development:
Drosophila Development: Embryogenesis
1 * egg: generate the system * larva: eat and grow
Chapter 21 The Genetic Basis of Development.
Determination commits a cell to its final fate
Developmental Genetics
Developmental Genetics
Homework #2 is due 10/17 Bonus #1 is due 10/24 FrakenFlowers.
1 * egg: generate the system * larva: eat and grow
Genes & Development Packet #49 Chapter #21.
Drosophila melanogaster
Establishing positional information along anterior-posterior axis
Chapters 19 - Genetic Analysis of Development:
CHAPTER 11 The Control of Gene Expression
Insect segmentation: Genes, stripes and segments in ‘Hoppers’
Evolution of Ftz protein function in insects
Evo-Devo: Variations on Ancestral Themes
Volume 14, Issue 4, Pages (April 2008)
The Mitotic Arrest in Response to Hypoxia and of Polar Bodies during Early Embryogenesis Requires Drosophila Mps1  Matthias G. Fischer, Sebastian Heeger,
Volume 133, Issue 2, Pages (April 2008)
Stefano De Renzis, J. Yu, R. Zinzen, Eric Wieschaus  Developmental Cell 
Genetics of Axis Specification in Drosophila: Anterior-Posterior Axis Determination Gilbert - Chapter 9.
Marelle Acts Downstream of the Drosophila HOP/JAK Kinase and Encodes a Protein Similar to the Mammalian STATs  Xianyu Steven Hou, Michael B Melnick, Norbert.
Presentation transcript:

BE/APh161 – Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology

Patterning During Development: Spacetime gene expression

Building a multicellular organism

Figure 21–4 How regulatory DNA defines the succession of gene expression patterns in development. The genomes of organisms A and B code for the same set of proteins but have different regulatory DNA. The two cells in the cartoon start in the same state, expressing the same proteins at stage 1, but step to quite different states at stage 2 because of their different arrangements of regulatory modules. Changes in the regulatory landscape: An Evolutionary View

Flies and their development

Fly development

Fly early embryo Development in a box! Doubling time = 8min

Figure 21–27 Development of the Drosophila egg from fertilization to the cellular blastoderm stage. (A) Schematic drawings. (B) Surface view—an optical-section photograph of blastoderm nuclei undergoing mitosis at the transition from the syncytial to the cellular blastoderm stage. Actin is stained green, chromosomes orange. (A, after H.A. Schneiderman, in Insect Development [P.A. Lawrence, ed.], pp. 3–34. Oxford, UK: Blackwell, 1976; B, courtesy of William Sullivan.) Fly early embryo

Development in a box! Doubling time = 8min How are these spatial patterns of gene expression established?

Figure 21–25 The origins of the Drosophila body segments during embryonic development. The embryos are seen in side view in drawings (A–C) and corresponding scanning electron micrographs (D–F). (A and D) At 2 hours the embryo is at the syncytial blastoderm stage (see Figure 21–51) and no segmentation is visible, although a fate map can be drawn showing the future segmented regions (color in A). (B and E) At 5–8 hours the embryo is at the extended germ band stage: gastrulation has occurred, segmentation has begun to be visible, and the segmented axis of the body has lengthened, curving back on itself at the tail end so as to fit into the egg shell. (C and F) At 10 hours the body axis has contracted and become straight again, and all the segments are clearly defined. The head structures, visible externally at this stage, will subsequently become tucked into the interior of the larva, to emerge again only when the larva goes through pupation to become an adult. (D and E, courtesy of F.R. Turner and A.P. Mahowald, Dev. Biol. 50:95–108, © Academic Press; F, from J.P. Petschek, N. Perrimon, and A.P. Mahowald, Dev. Biol. 119:175–189, © Academic Press.) Fly early embryo

Fly embryo by the numbers

Setting up positional information

08_017.jpg Key regulatory proteins and their gradients

Figure 21–39 The formation of ftz and eve stripes in the Drosophila blastoderm. ftz and eve are both pair-rule genes. Their expression patterns (shown in brown for ftz and in gray for eve) are at first blurred but rapidly resolve into sharply defined stripes. (From P.A. Lawrence, The Making of a Fly. Oxford, UK: Blackwell, 1992.) Patterns of gene expression on the anterior-posterior axis

Measuring patterns of gene expression during fly development

Figure 21–37 The regulatory hierarchy of egg- polarity, gap, segmentation, and homeotic selector genes. The photographs show expression patterns of representative examples of genes in each category, revealed by staining with antibodies against the protein products. The homeotic selector genes, discussed below, define the lasting differences between one segment and the next. (Photographs (i) from W. Driever and C. Nüsslein-Volhard, Cell 54:83–104, © Elsevier; (ii) courtesy of Jim Langeland, Steve Paddock, Sean Carroll, and the Howard Hughes Medical Institute; (iii) from P.A. Lawrence, The Making of a Fly. Oxford, UK: Blackwell, 1992; (iv) from C. Hama, Z. Ali, and T.B. Kornberg, Genes Dev. 4:1079–1093, © Cold Spring Harbor Press.) Setting up positional information: anterior- posterior axis

Turing model two cell model

Turing waves