Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,

Slides:



Advertisements
Similar presentations
Abteilung Festkörperphysik Solid State Physics University of Ulm Abteilung Festkörperphysik Solid State Physics University of Ulm Note that 1µm =
Advertisements

by Alexander Glavtchev
Modulation of conductive property in VO 2 nano-wires through an air gap-mediated electric field Tsubasa Sasaki (Tanaka-lab) 2013/10/30.
SOGANG UNIVERSITY SOGANG UNIVERSITY. SEMICONDUCTOR DEVICE LAB. Power MOSFET (3) SD Lab. SOGANG Univ. BYUNGSOO KIM.
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Derek Wright Monday, March 7th, 2005
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
Chun-Chieh Lu Carbon-based devices on flexible substrate 1.
Perovskite-type transition metal oxide interfaces
High-K Dielectrics The Future of Silicon Transistors
FROM STRANGE INSULATOR TO SPIN-ORBIT CONDUCTOR: UNVEILING ORBITAL- SELECTIVENESS AT THE LAO-STO INTERFACE. M. Gabay Intensive course by A. Millis: OXIDE.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Roadmap of Microelectronic Industry. Scaling of MOSFET Reduction of channel length L  L/α Integration density  α 2 Speed  α; Power/device  1/α 2 Power.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Electronic structure of La2-xSrxCuO4 calculated by the
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
                  Electrical transport and magnetic interactions in 3d and 5d transition metal oxides Kazimierz Conder Laboratory for Developments and.
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Magnetic sensors and logic gates Ling Zhou EE698A.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
School of Physics and Astronomy, University of Nottingham, UK
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
Observation of magnetic domains in LSMO thin films by XMCD-PEEM M. Oshima A, T. Taniuchi A, H. Kumigashira A, H. Yokoya B, T. Wakita C, H. Akinaga D, M.
Mon, 6 Jun 2011 Gabriel Kotliar
Philip Kim Department of Physics Columbia University Toward Carbon Based Electronics Beyond CMOS Devices.
2011/12/14 2nd term M1 colloquium Creation of huge metal-insulator domain and its electrical conduction property in VO 2 thin film on TiO 2 (001) substrate.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Micky Holcomb West Virginia University Bristow, Lederman, Stanescu & Wilson Micky Holcomb West Virginia University Bristow, Lederman, Stanescu & Wilson.
Materials 286KChris Freeze. M—I Transition In Rare-Earth Nickelates And The Impact Of Structural Distortions Outline: LaNiO 3 : The basics Tuning the.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
The Wisconsin Institutes for Discovery (Nano + Bio + Info)
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
Scaling of the performance of carbon nanotube transistors 1 Institute of Applied Physics, University of Hamburg, Germany 2 Novel Device Group, Intel Corporation,
11/13 Development of ferrite-based electronic-phase-change devices Tanaka lab. Tatsuya Hori.
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
Influence of carrier mobility and interface trap states on the transfer characteristics of organic thin film transistors. INFM A. Bolognesi, A. Di Carlo.
Electric field control of Metal- insulator phase transition in VO2 nano-wire channel Tsubasa Sasaki (Tanaka-lab) 2013/5/29.
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Master Colloquium Field-effect Control of Insulator-metal Transition Property in Strongly Correlated (La,Pr,Ca)MnO 3 Film Ion Liquid (IL) LPCMO channel.
Introduction to Spintronics
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
The Fate of Silicon Technology: Silicon Transistors Maria Bucukovska Scott Crawford Everett Comfort.
STRONGLY CORRELATED ELECTRONIC SYSTEMS AS UNCONVENTIONAL SEMICONDUCTORS IN UNCONVENTIONAL CONDITIONS Comparisons: Charge Density Waves Conducting and optically.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
금속 - 절연체 전이 (MIT) 현상의 규명 및 응용 김현탁 박사 ( 한국전자통신연구원 )
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Fatemeh (Samira) Soltani University of Victoria June 11 th
MoS2 RF Transistor Suki Zhang 02/15/17.
Lecture 19 OUTLINE The MOSFET: Structure and operation
Search for Superconductivity with Nanodevices
THE BIGGER PICTURE - TRENDS IN REAL SYSTEMS
Introduction to Materials Science and Engineering
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Ionic liquid gating of VO2 with a hBN interfacial barrier
Fig. 4 Transfer characteristics of the carristor.
Fig. 3 HfSe2 transistors. HfSe2 transistors. (A) Schematic of HfSe2 device, back-gated through 90-nm SiO2, and with ALD alumina used as both protective.
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue, 1,2 H. Yamada, 1 H. Sato, 1,2 and H. Akoh 1,2 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 JST-CREST

Outline ・ Correlated electron system ・ Mott metal-insulator transition ・ Mott field effect transistor Feature/potential Issues/challenges ・ Experiments Mn-oxides Ni-oxides V-oxides ・ Summary

Correlated electron system Band insulator E EFEF electron Mott insulator t on-site Coulomb repulsion One electron in an orbital due to on-site Coulomb repulsion (U > t) E EFEF t: Transfer U: Coulomb Pauli’s rule No more than 2 electrons in an orbital E EFEF U upper Hubbard band (UHB) lower Hubbard band (LHB) electron orbital

Mott insulator-metal transition E EFEF W U Mott insulator Correlated-electron metal W < UW > U Mott transition W: band width U: Coulomb energy E EFEF W U W ∝ tW ∝ t t (t < U)(t > U) electron Electron solid Electron liquid Carrier doping, magnetic field, light, ・・・ light, ・・・ Decrease in U (band gap) Huge resistance change Y. Tomioka, unpublished

T Carrier density Antiferromagnetic insulator Critical point Electronic phases T Carrier density Paramagnetic metal Quantum CP (La,Sr)MnO 3 Superconductivity Changes in electronic, magnetic, and optical properties Optical property Magnetizum Ferromagnetic metal Antiferromagnetic insulator metal

Mott FET

Mott FET can control electronic, magnetic, and optical properties by electric field Gate Correlated-electron material Drain Source “ON” “OFF” “electronic”“magnetic” “optical”

Mott transition/transistor ‐ Scaling? ‐ Metal ON Insulator OFF Mott transition Number of electrons 10 3 electrons 4 nm In principle, a nanometer-scale Mott insulator shows the Mott transition No one has demonstrated ElectronsolidElectronliquid

Kotliar et.al PRL 89, (2002). First order phase transition Hysteretic behavior Nonvolatile(?) V < 0 V > 0 electrode doped-Mott ins. Oka, Nagaosa, PRL95, (2005) Mott transition/transistor ‐ Nonvolatile? ‐ No one has demonstrated

Matsubara et al., PRL99, (2007) Reflectcance Electronic state Karr rotation Magnetic state Mott transition takes place within a few picoseconds Sample: Gd 0.55 Sr 0.45 MnO 3 Mott transition/transistor ‐ Fast switching? ‐ Ultrafast optical pump ‐ probe spectroscopy

Challenges conventional gate dielectric (SiO 2 ): ~10 13 /cm 2 For the realization of a practical Mott transistor, Correlated-electron materials with a MI transition attainable at significantly lower carrier concentrationsCorrelated-electron materials with a MI transition attainable at significantly lower carrier concentrations High-k gate materials with a large breakdown strengthHigh-k gate materials with a large breakdown strength Ahn, Triscone, Mannhart, Nature 424, 1015 (2003) – cm -2

Electric double layer transistor

Outer Helmholtz plane J. T. Ye et al., Nature Mater. 9, 125 (2010) S. Ono et al., APL 94, (2009) a large amount of carriers: – cm -2 Electric double layer transistor Electrolyte/ionic liquid is used as gate dielectrics Large capacitance: > 10  F/cm 2

CMO channel Thickness: ~ 30 nm W/L: ~ 10μm/100μm + − DEME + cation TFSI - anion GDS ++++ − −−− Ionic Liquid Sepa- rator − − CMO IDID IGIG VDVD VGVG YAO substrate 10  F/cm -3 Hz →1.5 × /cm G = 2.5 V Electric double layer transistor (EDLT) S. Asamuna, AS et al., Appl. Phys. Lett. 97, (2010) P-.H. Xiang, AS et al., Adv. Mater. 23, 5822 (2011)

Insulator Metal Thickness of channel : 40nm On/Off ratio: >10 >10 P-.H. Xiang, AS et al., Adv. Mater. 23, 5822 (2011) Nonvolatile change in resistance at “room temperature” EDLT consisting of compressively strained CaMnO 3 film

New approach for Mott transistor Sheet Resistance Temperature ·CMR-manganite, High T C cuprate ·10 14 ~ /cm 2 carriers non-doped (V G = 0) carrier doped (V G ≠ 0) Sheet Resistance (logarithmic scale) Temperature “sharp” and “large” resistance change (Nd,Sm)NiO 3 T MI = 200–400 K VO 2 T MI = 300–340 K T MI

NdNiO 3 EDLT S. Asamuna, AS et al., Appl. Phys. Lett. 97, (2010)R. Scherwitzl et al., Adv. Mater. 22, 5517 (2010).

Nd 0.5 Sm 0.5 NiO 3 EDLT NSNO(0.5)/NdGaO 3 (110) (Thickness:~6 nm) Resistivity(  cm) Temperature (K) V -2.3V -2.5V (Nd,Sm)NiO 3 channel VGVG Temperature (ºC) Large resistance change (~10 5 ) at room temperature S. Asamuna, AS et al., unpublished I SD (A) V G K

¥ Nonvolatile insulator metal Gate voltage VO 2 VO 2 EDLT Nakano et al., Nature 487, 459 (2012)

Oxide FET Mott FET SrTiO 3 TiO 2 (anatase) In-Ga-Zn-O GdBa 2 Cu 3 O 7 (La,Sr)MnO 3 Operation temperature On/Off ratio Gate material SrTiO 3 References R. T. ~ a-LaAlO 3 /MgO R. T. Gate voltage (V) Mobility (cm 2 /Vs) 5 APL92, (2008) ~102.5~10 5 a-CaHfO 3 JJAP46, L515 (2007) La 2 CuO 4 R. T.(?)<10<8SrTiO 3 APL76, 3632 (2000) (La,Ca)MnO 3 SrRu 1-x Ti x O 3 77K R. T. <10 <1 ±10PZT APL82, 4770 (2003) superconductivity: T C ~0.3K at V G =-3Velectrolyte Nat. Mater. 7, 855 (2008) K<10±3 PRL102, (2009) PZT (ferroelectrics ) K<3±3 Science 284, 1152 (1999) K<3±1PZT PRB74, (2006) ~ a-Y 2 O 3 APL89, (2006) Channel KTaO 3 ~ a-Al 2 O 3 R. T.100 APL84, 3726 (2004) CaMnO 3 50K R. T. >10 3 ~10 ±2 Adv. Mater. 23, 5822 (2011) (Nd,Sm)NiO 3 ~100K>10±2.5Ionic liquid APL97, (2010) Ionic liquid NdNiO 3 ±2.5Ionic liquid unpublished VO 2 260K ~10 3 R. T.~10 5 Ionic liquid±3 Nature 487, 459 (2012)

Feature/potential of Mott FET Functionality: electronic, magnetic, and optical switchesFunctionality: electronic, magnetic, and optical switches Scaling limit: < 10 nmScaling limit: < 10 nm Nonvolatile and fast switchingNonvolatile and fast switching Bottleneck/challenge A large number of carriers (>10 14 cm -2 ) is necessary to be doped in order to induce the Mott transition Summary For the realization of a practical Mott transistor (“solid”) Higk-k gate materials with a large breakdown strength(“solid”) Higk-k gate materials with a large breakdown strength expected from theoretical and experimental studies on correlated electron materials