Parenteral Nutrition Graphic source: http://www.rxkinetics.com/tpntutorial/1_4.html.

Slides:



Advertisements
Similar presentations
IV INSERTION HOME CARE. Intravenous (IV) Medications enter the patients bloodstream directly by way of a vein Appropriate when: – rapid effect is required.
Advertisements

MCQ ( PARENTERAL NUTRITION PN)
Nutrition in Surgical Patients Ronald Merrell, MD Chairman of Surgery Virginia Commonwealth University.
ENTERAL AND PARENTERAL NUTRITION UPDATE WITH THE NUTRITION CARE PROCESS Suzanne Neubauer, PhD,RD,CNSC Framingham State University Overlook Health Center,
Review on enterocutaneous fistula
Comparison of PN Usage Before and After the Implementation of a PN Usage Policy Ali Ballard, RD, LD, CNSC Clinical Dietitian, MUSC.
TPN Indications James S. Scolapio, M.D. Director of Nutrition Division of Gastroenterology and Hepatology Mayo Clinic Jacksonville, FL
Infusion Therapy.
1 بسم الله الرحمن الرحيم. 2 Parenteral nutrition in ICU patients Dr Mohammad Safarian.
Ch. 21: Parenteral Nutrition
Parenteral Nutrition NFSC 370 McCafferty.
Adult Health Nursing II Block 7.0. Parenteral Nutrition Adult Health II Block 7.0 Block 7.0 Module 1.4.
Parenteral nutrition in neonate. Goals minimizes weight loss improves growth and neurodevelopmental outcome reduce the risk of mortality and NEC.
Department of Biochemistry Faculty of Pharmacy Suez Canal University.
Kelvin Chan Department of Surgery, Queen Elizabeth Hospital Joint Hospital Surgical Grand Round 2013 nutrition in surgery facts, myths and controversies.
Prior to 1968, many chronically/critically ill pts died of malnutrition; not 1˚ condition Parenteral nutrition, meeting all or part of pts nutritional.
Mosby items and derived items © 2005, 2002 by Mosby, Inc. CHAPTER 53 Nutritional Supplements.
Methods of Nutrition Support
Nutrient Delivery  Chapter 14  J Pistack MS/Ed.
HYPERALIMENTATION & CENTRAL VENOUS CATHETERS NURSING 108 ECC Majuvy L. Sulse MSN, CCRN.
1 Nutrition – Use and indications Malnutrition leads to poor wound healing, post-operative complications and sepsis. Malnutrition leads to poor wound healing,
Parenteral Nutrition Designing the Solution Mark H. DeLegge, MD, FACG, AGAF, FASGE Digestive Disease Center Medical University of South Carolina.
PARENTERAL NUTRITION IN HAEMATOPOIETIC STEM CELL TRANSPLANTATION BY DR. IDEMUDIA J.O DEPARTMENT OF CHEMICAL PATHOLOGY UBTH, BENIN CITY.
Intestinal Failure Unit
Surgical Nutrition Dr. Robert Mustard September 28, 2010.
Presented by : Dr. Mohammad Tarawneh. The human body is an engine designed to burn fuel in order to perform work. The fuels we utilize are called nutrients.
Optimizing Nutrition Therapy
Parenteral Nutrition This session will provide an overview of parenteral nutrition. Please see the associated chapter in the Manual, titled Parenteral.
Mosby items and derived items © 2011, 2007, 2004 by Mosby, Inc., an affiliate of Elsevier Inc. CHAPTER 54 Nutritional Supplements.
Ahmed Mayet Pharmacotherapy Specialist Associate Professor King Saud University.
Parenteral Nutrition By Dr. Hanan Said Ali. Objectives. Define parenteral nutrition. Explain how to prepare the patient. Explain how administer parenteral.
NutritionNutrition NUR 102 Lab Module I. Enteral Nutrition Definition—administration of nutrients directly into the GI tract Beneficial when oral feedings.
MNA M osby ’ s Long Term Care Assistant Chapter 25 Nutritional Support and IV Therapy.
Parenteral NS Fluid and electrolyte requirements. Calculate enteral and parenteral formulations.
Focus on Parenteral Nutrition
Gastrointestinal Symptoms and other Factors associated with Failure of Enteral Nutrition in Surgical Intensive Care Unit Session: Poster Poster No.: PP05.
Early Enteral Nutrition in the Critically Ill. Objectives To define early enteral nutrition To review the benefits of early enteral nutrition To explain.
Linda S. Williams / Paula D. Hopper Copyright © F.A. Davis Company Understanding Medical Surgical Nursing, 4th Edition Chapter 7 Nursing Care of.
Surgical Nutrition Dr. Robert Mustard October 4, 2011.
Infusion Therapy.
Parenteral Nutrition Chapter 15. General Comments on Parenteral Nutrition Infusion of a nutritionally complete, isotonic or hypertonic formula Peripheral.
Mosby items and derived items © 2007, 2005, 2002 by Mosby, Inc., an affiliate of Elsevier Inc. CHAPTER 55 Nutrition Supplements.
Ahmed Mayet, BCPS.,BCNSP Pharmacotherapy Specialist Associate Professor King Saud University.
Methods of Nutrition Support KNH 411. Oral diets “House” or regular diet Therapeutic diets Maintain or restore health & nutritional status Accommodate.
Lecture 10b 21 March 2011 Parenteral Feeding. Nutrients go directly into blood stream bypassing gastrointestinal tract Used when a patient cannot, due.
© 2004, 2002 Elsevier Inc. All rights reserved. Enteral Nutrition Definition Nutritional support via placement through the nose, esophagus, stomach, or.
1 بسم الله الرحمن الرحيم. 2 The importance of Enteral Nutrition in critically ill patients Dr Mohammad Safarian.
Manual of I.V. Therapeutics, 6 th Edition Copyright F.A. Davis Company Copyright © F.A. Davis Company CHAPTER 12 Parenteral Nutrition.
Feeding Routes.
Lecture 10b 18 March 2013 Parenteral Feeding. Parenteral Feeding (going around ie circumventing the intestine) Nutrients go directly into blood stream.
ENTERAL and PARENTERAL FEEDING
Date of download: 6/24/2016 From: The Michigan Appropriateness Guide for Intravenous Catheters (MAGIC): Results From a Multispecialty Panel Using the RAND/UCLA.
Clinical Practice of Total Parenteral Nutrition in Pediatrics
کارگاه آموزشی تغذیه در آی سی یو – بخش سوختگی
© 2007 Thomson - Wadsworth Methods of Nutrition Support Chapter 7.
Dr. Mahamed Hussein General Surgery Azadi Teaching Hospital
Parenteral Nutrition.
Dr Amit Gupta Associate Professor Dept.of Surgery
Total Parenteral Nutrition
Nutrition Support Ahmed Mayet , BCPS.,BCNSP Pharmacotherapy Specialist
Special nutritional needs
Parenteral nutrition.
Nutrition Support Ahmed Mayet Pharmacotherapy Specialist
Nutrition Evaluation and Support
By Alaina Darby Parenteral Nutrition.
Special topics Topic 5 Parenteral nutrition
Nursing Care of Patients Receiving IV Therapy
Nutrient Delivery To determine Kcal and protein needs, along with appropriate diet medical nutrition therapy is needed SCREEN is a series of nutrition.
Inflammatory bowel disease(IBD)-ulcerative colitis and Crohn’s
Critical Care Metabolic demand for inflammation, sepsis, surgery, trauma, wounds, organ failure increase stress factor by 1.3 With intubation, sedation.
Presentation transcript:

Parenteral Nutrition Graphic source: http://www.rxkinetics.com/tpntutorial/1_4.html

Parenteral Nutrition (Definition) Components are in elemental or “pre-digested” form Protein as amino acids CHO as dextrose Fat as lipid emulsion Electrolytes, vitamins and minerals

Parenteral Nutrition (PN) Definition Delivery of nutrients intravenously, e.g. via the bloodstream. Central Parenteral Nutrition: often called Total Parenteral Nutrition (TPN); delivered into a central vein Peripheral Parenteral Nutrition (PPN): delivered into a smaller or peripheral vein A.S.P.E.N. Nutrition Support Practice Manual, 2nd edition, 2005, p. 97

Indications for PN (ASPEN) When Specialized Nutrition Support (SNS) is indicated, EN should generally be used in preference to PN. (B) When SNS is indicated, PN should be used when the gastrointestinal tract is not functional or cannot be accessed and in patients who cannot be adequately nourished by oral diets or EN. (B) The anticipated duration of PN should be >7 days ASPEN Board of Directors. JPEN 26;19SA, 2002.; ASPEN Nutrition Support Practice Manual, 2005, p. 108

EN vs PN in Critical Care (EAL) R.1. If the critically ill ICU patient is hemodynamically stable with a functional GI tract, then EN is recommended over PN. Patients who received EN experienced less septic morbidity and fewer infectious complications than patients who received PN. Strong, Conditional ADA Evidence Analysis Library, accessed 8/07

EN vs PN in Critical Care (EAL) In the critically ill patient, EN is associated with significant cost savings when compared to PN. There is insufficient evidence to draw conclusions about the impact of EN or PN on LOS and mortality. Strong, Conditional ADA Evidence Analysis Library, accessed 8/07

Common Indications for PN Patient has failed EN with appropriate tube placement Severe acute pancreatitis Severe short bowel syndrome Mesenteric ischemia Paralytic ileus Small bowel obstruction GI fistula unless enteral access can be placed distal to the fistula or where volume of output warrants trial of EN Adapted from Mirtallo in ASPEN, The Science and Practice of Nutrition Support: A Case-Based Core Curriculum. 2001.

Contraindications Functional and accessible GI tract Patient is taking oral diet Prognosis does not warrant aggressive nutrition support (terminally ill) Risk exceeds benefit Patient expected to meet needs within 14 days

PN Central Access May be delivered via femoral lines, internal jugular lines, and subclavian vein catheters in the hospital setting Peripherally inserted central catheters (PICC) are inserted via the cephalic and basilic veins Central access required for infusions that are toxic to small veins due to medication pH, osmolarity, and volume

Venous Sites for Access to the Superior Vena Cava

PICC Lines (peripherally inserted central catheter) PICC lines may be used in ambulatory settings or for long term therapy Used for delivery of medication as well as PN Inserted in the cephalic, basilic, median basilic, or median cephalic veins and threaded into the superior vena cava Can remain in place for up to 1 year with proper maintenance and without complications

PN: Peripheral Access PN may be administered via peripheral access when Therapy is expected to be short term (10-14 days) Energy and protein needs are moderate Formulation osmolarity is <600-900 mOsm/L Fluid restriction is not necessary A.S.P.E.N. Nutrition Support Practice Manual, 2005; p. 94

Macronutrients & Micronutrients Parenteral Nutrition Macronutrients & Micronutrients

Macronutrients: Carbohydrate Source: Monohydrous dextrose Properties: Nitrogen sparing Energy source 3.4 Kcal/g Hyperosmolar Recommended intake: 2 – 5 mg/kg/min 50-65% of total calories

Macronutrients: Carbohydrate Potential Adverse Effects: Increased minute ventilation Increased CO2 production Increased RQ Increased O2 consumption Lipogenesis and liver problems Hyperglycemia

Macronutrients: Amino Acids Source: Crystalline amino acids— standard or specialty Properties: 4.0 Kcal/g EAA 40–50% NEAA 50- 60% Glutamine / Cysteine Recommended intake: 0.8-2.0 g/kg/day 15-20% of total calories

Macronutrients: Amino Acids Potential Adverse Effects: Increased renal solute load Azotemia

Macronutrients: Amino Acids Specialized Amino Acid Solutions Branched chain amino acids (BCAA) Essential amino acids (EAA) Not shown to improve patient outcome More expensive than standard solutions

Macronutrients: Lipid Source: Safflower and/or soybean oil Properties: Long chain triglycerides Isotonic or hypotonic Stabilized emulsions 10 Kcals/g Prevents essential fatty acid deficiency Recommended intake: 0.5 – 1.5 g/kg/day (not >2 g/kg) 12 – 24 hour infusion rate

Macronutrients: Lipids Requirements 4% to 10% kcals given as lipid meets EFA requirements; or 2% to 4% kcals given as linoleic acid Generally 500 mL of 10% fat emulsion given two times weekly or 500 mL of 20% lipids given once weekly will prevent EFAD Usual range 25% to 35% of total kcals Max. 60% of kcal or 2 g fat/kg

Macronutrients: Lipids Potential Adverse Effects: Egg allergy Hypertriglyceridemia Decreased cell-mediated immunity (limit to <1 g/kg/day in critically ill immunosuppressed patients) Abnormal LFTs

Parenteral Base Solutions Carbohydrate Available in concentrations from 5% to 70% D30, D50 and D70 used for manual mixing Amino acids Available in 3, 3.5, 5, 7, 8.5, 10, 15, 20% solutions 8.5% and 10% generally used for manual mixing Fat 10% emulsions = 1.1 kcal/ml 20% emulsions = 2 kcal/ml 30% emulsions = 3 kcal/ml (used only in mixing TNA, not for direct venous delivery) The A.S.P.E.N. Nutrition Support Practice Manual, 2nd edition, 2005, p. 97; Barber et al. In ASPEN, The Science and Practice of Nutrition Support: A Case-Based Core Curriculum. 2001.

Other Requirements Fluid—30 to 50 ml/kg (1.5 to 3 L/day) Electrolytes Sterile water is added to PN admixture to meet fluid requirements Electrolytes Use acetate or chloride forms to manage metabolic acidosis or alkalosis Vitamins: multivitamin formulations Trace elements

Electrolytes/Vitamins/Trace Elements Because parenterally-administered vitamins and trace elements do not go through digestion/absorption, recommendations are lower than DRIs Salt forms of electrolytes can affect acid-base balance

Adult Parenteral Multivitamins New FDA requirements published in 2000 replacing NAG-AMA guidelines Increased B1, B6, vitamin C, folic acid, added Vitamin K MVI Adult (Mayne Pharma) and Infuvite (MVI-13) from Baxter contain Vitamin K and are consistent with the new FDA guidelines MVI-12 (Mayne Pharma) does not contain Vitamin K

Parenteral Nutrition Vitamin Guidelines FDA Guidelines* A IU 3300 IU D IU 200 IU E IU 10 IU K mcg 150 mcg C mg 200 Folate mcg 600 Niacin mg 40 Vitamin FDA Guidelines* B2 mg 3.6 B1 mg 6 B6 mg B12 mg 5.0 Biotin mcg 60 B5 dexpanthenol mg 15 *Federal Register 66(77): April 20, 2000

Daily Trace Element Supplementation for Adult PN INTAKE Chromium 10-15 mcg Copper 0.3-0.5 mg Manganese 60-100 mcg Zinc 2.5-5.0 mg ASPEN: Safe practices for parenteral nutrition formulations. JPEN 22(2) 49, 1998

Daily Electrolyte Requirements Adult PN PN Equiv RDA Standard Intake Calcium 10 mEq 10-15 mEq Magnesium 8-20 mEq Phosphate 30 mmol 20-40 mmol Sodium N/A 1-2 mEq/kg + replacement Potassium 1-2 mEq/kg Acetate As needed for acid-base Chloride ASPEN: Safe practices for parenteral nutrition formulations. JPEN 22(2) 49, 1998

PN Contaminants Components of PN formulations have been found to be contaminated with trace elements Most common contaminants are aluminum and manganese Aluminum toxicity a problem in pts with renal compromise on long-term PN and in infants and neonates Can cause osteopenia in long term adult PN patients ASPEN Nutrition Support Practice Manual 2005; p. 109

PN Contaminants FDA requires disclosure of aluminum content of PN components Safe intake of aluminum in PN is set at 5 mcg/kg/day

PN Contaminants Manganese toxicity has been reported in long term home PN patients May lead to neurological symptoms Manganese concentrations of 8 to 22 mcg/daily volume have been reported in formulations with no added manganese May need to switch to single-unit trace elements that don’t include manganese ASPEN Nutrition Support Practice Manual 2005; p. 98-99

Calculating Nutrient Needs Provide adequate calories so protein is not used as an energy source Avoid excess kcal (>35 kcal/kg) Determine energy and protein needs using usual methods (kcals/kg, Ireton-Jones 1992, Harris-Benedict) Use specific PN dosing guides for electrolytes, vitamins, and minerals

Protein Requirements 1.2 to 1.5 g protein/kg IBW mild or moderate stress Up to 2.5 g protein/kg IBW burns or severe trauma

Peripheral Parenteral Nutrition Hyperosmolar solutions cause thrombophlebitis in peripheral veins Limited to 800 to 900 mOsm/kg (MHS uses 1150 mOsm/kg w/ lipid in the solution) Dextrose limited to 5-10% final concentration and amino acids 3% final concentration Electrolytes may also be limited Use lipid to protect veins and increase calories

Peripheral Parenteral Nutrition New catheters allow longer support via this method In adults, requires large fluid volumes to deliver adequate nutrition support (2.5-3L) May be appropriate in mild to moderate malnutrition (<2000 kcal required or <14 days) More commonly used in infants and children Controversial

Contraindications to Peripheral Parenteral Nutrition Significant malnutrition Severe metabolic stress Large nutrition or electrolyte needs (potassium is a strong vascular irritant) Fluid restriction Need for prolonged PN (>2 weeks) Renal or liver compromise From Mirtallo. In ASPEN, The Science and Practice of Nutrition Support: A Case-Based Core Curriculum. 2001, 222.

Compounding Methods Total nutrient admixture (TNA) or 3-in-1 Dextrose, amino acids, lipid, additives are mixed together in one container Lipid is provided as part of the PN mixture on a daily basis and becomes an important energy substrate 2-in-1 solution of dextrose, amino acids, additives Typically compounded in 1-liter bags Lipid is delivered as piggyback daily or intermittently as a source of EFA

Advantages of TNA Decreased nursing time Decreased risk of touch contamination Decreased pharmacy prep time Cost savings Easier administration in home PN Better fat utilization in slow, continuous infusion of fat Physiological balance of macronutrients

Disadvantages of TNA Diminished stability and compatibility IVFE (IV fat emulsions) limits the amount of nutrients that can be compounded Limited visual inspection of TNA; reduced ability to detect precipitates ASPEN Nutrition Support Practice Manual 2005; p. 98-99

Two-in-One PN

PN Compounding Machines: Automix

PN Compounding Machines: Micromix

PN Solution Componentsa Central Peripheral ---Solutions--- Solutions Lipid- Dextrose- based based Dextrose 14.5% 35.0% <10.0% Amino Acids 5.5% 5.0% <4.25% Fat 5.0% 250 ml/ 3.0 - 8.0% 20% fat q M,Th a% Final Concentration Courtesy of Marian, MJ.

Initiation of PN Adults should be hemodynamically stable, able to tolerate the fluid volume necessary to deliver significant support, and have central venous access If central access is not available, PPN should be considered (more commonly used in neonatal and peds population) Start slowly (1 L 1st day; 2 L 2nd day) ASPEN Nutrition Support Practice Manual 2005; p. 98-99

Initiation of PN: formulation As protein associated with few metabolic side effects, maximum amount of protein can be given on the first day, up to 60-70 grams/liter Maximum CHO given first day 150-200 g/day or a 15-20% final dextrose concentration In pts with glucose intolerance, 100-150 g dextrose or 10-15% glucose concentration may be given initially ASPEN Nutrition Support Practice Manual 2005; p. 98-99

Initiation of PN: Formulation Generally energy and protein needs can be met in adults by day 2 or 3 In neonates and peds, time to reach full support relates inversely to age, may be 3-5 days

Initiation of PN: Formulation Dextrose content of PN can be increased if capillary blood glucose levels are consistently <180 mg/dL IVFE in PN can be increased if triglycerides are <400 mg/dL ASPEN Nutrition Support Practice Manual 2005; p. 109

PN Administration:Transition to Enteral Feedings in Adults Controversial In adults receiving oral or enteral nutrition sufficient to maintain blood glucose, no need to taper PN Reduce rate by half every 1 to 2 hrs or switch to 10% dextrose IV) may prevent rebound hypoglycemia (not necessary in PPN) Monitor blood glucose levels 30-60 minutes after cessation

PN Administration:Transition to Enteral Feedings in Pediatrics Generally tapered more slowly than in adults as oral or enteral feedings are introduced and advanced Generally PN is continued until 75-80% of energy needs are met enterally ASPEN Nutrition Support Practice Manual 2005; p. 109

Medications That May Be Added to Total Nutrient Admixture (TNA) Phytonadione Selenium Zinc chloride Levocarnitine Insulin Metoclopromide Ranitidine Sodium iodide Heparin Octreotide

Parenteral Nutrition Infusion Schedules

Infusion Schedules Continuous PN Non-interrupted infusion of a PN solution over 24 hours via a central or peripheral venous access

Continuous PN Advantages Well tolerated by most patients Requires less manipulation decreased nursing time decreased potential for “touch” contamination

Continuous PN Disadvantages Persistent anabolic state altered insulin : glucagon ratios increased lipid storage by the liver Reduces mobility in ambulatory patients

Infusion Schedules Cyclic PN The intermittent administration of PN via a central or peripheral venous access, usually over a period of 12 – 18 hours Patients on continuous therapy may be converted to cyclic PN over 24-48 hours

Cyclic PN Advantages Approximates normal physiology of intermittent feeding Maintains: Nitrogen balance Visceral proteins Ideal for ambulatory patients Allows normal activity Improves quality of life

Cyclic PN Disadvantages Incorporation of N2 into muscle stores may be suboptimal Nutrients administered when patient is less active Not tolerated by critically ill patients Requires more nursing manipulation Increased potential for touch contamination Increased nursing time

Parenteral Nutrition Home TPN

Home TPN Safety and efficacy depend on: Proper selection of patients Adequate discharge planning/education Home monitoring protocols

Home TPN Patient selection Reasonable life expectancy Demonstrates motivation, competence, compliance Home environment conducive to sterile technique

Home TPN: Discharge Planning Determination whether patient meets payer criteria for PN; completion of CMN forms Identification of home care provider and DME supplier Identification of monitoring team for home Conversion of 24-hour infusion schedule to cyclic infusion with monitoring of patient response

Home TPN Cost effective Quicker discharge from hospital Improved rehabilitation in the home Reduced hospital readmissions

Common Indications for PN in Peds Surgical GI disorders Intractable diarrhea of infancy Short bowel syndrome Inflammatory bowel disease Intractable chylothorax Intensive cancer treatment

Pediatric Energy Needs in PN No consensus exists as to how to determine energy needs of hospitalized children RDAs are intended for healthy children but can use for healthy/acutely ill children and monitor response Can estimate REE using WHO equation and add stress factors, monitor clinical course Indirect calorimetry recommended in difficult cases

RDAs for Energy and Protein Category Age (yr) Energy (kcal/kg/d) Protein (g/kg/d) Infants 0.0-0.5 108 2.2 Children 1-3 102 1.2 4-6 90 1.1 7-10 70 1.0 Females 11-14 47 15-18 40 0.8 Males 44 45 0.9 Recommended Dietary Allowances, 10th ed. 1989. National Academy Press, Washington, DC

WHO Equations to predict REE from body weight Sex/Age Range (years) Equation to Derive REE (kcal/d) Males 0-3 (60.0 x wt) – 54 Males 3-10 (22.7 x wt) + 495 Males 10-18 (17.5 x wt) + 651 Females 0-3 (6.1 x wt) – 51 Females 3-10 (22.5 x wt) + 499 Females 10-18 (12.2 x wt) + 746

Increase WHO REE by stress factors Fever Increase 13% per degree C Cardiac Failure 15-25% Traumatic Injury 20-30% Severe respiratory distress or broncho-pulmonary dysplasia 25-30% Severe sepsis 45-50 Olson, D. Pediatric Parenteral Nutrition. In Sharpening your skills as a nutrition support dietitian. DNS, 2003.

Trauma/Critically Ill Peds Age in years Kcals/kg G/pro/kg 0-1 90-120 2.0-3.5 1-6 75-90 1.8-3.0 7-12 50-75 1.5-2.5 13-18 30-60 1.0-2.0

Pediatric PN: Fluids Standard calculation: 100 kcal/kg for infant 3-10 kg 1000 kcal + 50 kcal/kg for every kg over 10 kg for a child 10-20 kg 1500 kcal + 20 kcal/kg for every kg over 20 kg for a child over 20 kg 1 mL fluid/kcal/d + adjustments for fever, diarrhea, stress, etc. ASPEN BOD Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN 26;26SA, 2001

Pediatric PN: Carbohydrate Carbohydrate should comprise 45-50% of caloric intake in infants and children (C) For neonates, CHO delivery in PN should begin at 6-8 mg/kg/minute of dextrose and advanced to 10-14 mg/kg/minute. (B) ASPEN BOD Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. JPEN 26;28-29SA, 2001

Pediatric PN: Lipid Preterm: start at .5 g/kg/day and increase by .5g/kg q day Infants: Start at 1 g/kg and increase by .5 g/kg/day until the maximum or desired dose is reached; need 0.5 to 1 g/kg/day for EFA needs Maximum is 3 g/kg for <24 months old and 2.5g/kg for 24 months and older

Daily Electrolyte and Mineral Requirements for Peds Pts Infants/Children Adolescents Sodium 2-6 mEq/kg Individualized Chloride 2-5 mEq/kg Potassium 2-3 mEq/kg Calcium 1-2.5 mEq/kg 10-20 mEq Phosphorus 0.5-1 mmol/kg 10-40 mmol Magnesium 0.3-0.5 mEq/kg 10-30 mEq National Advisory Group. Safe practices for parenteral nutrition formulations JPEN 1998;22:49-66

Document in Chart Type of feeding formula and tube Method (bolus, drip, pump) Rate and water flush Intake energy and protein Tolerance, complications, and corrective actions Patient education