6.8 – Pascal’s Triangle and the Binomial Theorem.

Slides:



Advertisements
Similar presentations
Binomial Theorem 11.7.
Advertisements

The binomial theorem 1 Objectives: Pascal’s triangle Coefficient of (x + y) n when n is large Notation: ncrncr.
Math 143 Section 8.5 Binomial Theorem. (a + b) 2 =a 2 + 2ab + b 2 (a + b) 3 =a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 4 =a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b.
Binomial Coefficient.
Ms. Nong Digital Lesson (Play the presentation and turn on your volume)
Binomial Distributions
The Binomial Theorem.
Binomial Distributions
What does Factorial mean? For example, what is 5 factorial (5!)?
Binomial Expansion Honors Advanced Algebra Presentation 2-3.
2.4 Use the Binomial Theorem Test: Friday.
BINOMIAL EXPANSION. Binomial Expansions Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The binomial theorem provides a useful method.
13.5 The Binomial Theorem. There are several theorems and strategies that allow us to expand binomials raised to powers such as (x + y) 4 or (2x – 5y)
The Binomial Theorem 9-5. Combinations How many combinations can be created choosing r items from n choices. 4! = (4)(3)(2)(1) = 24 0! = 1 Copyright ©
Copyright © 2007 Pearson Education, Inc. Slide 8-1.
11.1 – Pascal’s Triangle and the Binomial Theorem
Aim: Binomial Theorem Course: Alg. 2 & Trig. Do Now: Aim: What is the Binomial Theorem and how is it useful? Expand (x + 3) 4.
Warm up 1. Write the expression in expanded form, then find the sum. 2. Express the series using sigma notation.
Lesson 6.8A: The Binomial Theorem OBJECTIVES:  To evaluate a binomial coefficient  To expand a binomial raised to a power.
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
Binomial – two terms Expand (a + b) 2 (a + b) 3 (a + b) 4 Study each answer. Is there a pattern that we can use to simplify our expressions?
The Binomial Theorem.
Binomial Theorem & Binomial Expansion
The Binomial Theorem. (x + y) 0 Find the patterns: 1 (x + y) 1 x + y (x + y) 2 (x + y) 3 x 3 + 3x 2 y + 3xy 2 + y 3 (x + y) 4 (x + y) 0 (x + y) 1 (x +
(a + b) 0 =1 (a + b) 1 = (a + b) 2 = (a + b) 3 = 1a 1 + 1b 1 1a 2 + 2ab + 1b 2 1a 3 + 3a 2 b + 3ab 2 + 1b 3 Binomial Expansion... What do we notice????
2-6 Binomial Theorem Factorials
A binomial is a polynomial with two terms such as x + a. Often we need to raise a binomial to a power. In this section we'll explore a way to do just.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
7.1 Pascal’s Triangle and Binomial Theorem 3/18/2013.
Pg. 606 Homework Pg. 606 #11 – 20, 34 #1 1, 8, 28, 56, 70, 56, 28, 8, 1 #2 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 #3 a5 + 5a4b + 10a3b2 + 10a2b3.
8.5 The Binomial Theorem. Warm-up Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 (x + y) 3 = x 3 + 3x 2 y + 3xy 2 + y 3.
Algebra 2 CC 1.3 Apply the Binomial Expansion Theorem Recall: A binomial takes the form; (a+b) Complete the table by expanding each power of a binomial.
Section 8.5 The Binomial Theorem. In this section you will learn two techniques for expanding a binomial when raised to a power. The first method is called.
Section 8.5 The Binomial Theorem.
Binomial Theorem and Pascal’s Triangle.
Splash Screen.
The Binomial Theorem.
The binomial expansions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Pascal’s Triangle and the Binomial Theorem
Section 9-5 The Binomial Theorem.
The Binomial Theorem Ms.M.M.
The Binomial Expansion Chapter 7
6-8 The Binomial Theorem.
A quick and efficient way to expand binomials
Ch. 8 – Sequences, Series, and Probability
The Binomial Theorem Objectives: Evaluate a Binomial Coefficient
9.5 The Binomial Theorem Let’s look at the expansion of (x + y)n
10.2b - Binomial Theorem.
Binomial Expansion.
6.8 – Pascal’s Triangle and the Binomial Theorem
Objectives Multiply polynomials.
8.4 – Pascal’s Triangle and the Binomial Theorem
TCM – DO NOW A peer believes that (a+b)3 is a3 + b3 How can you convince him that he is incorrect? Write your explanation in your notes notebook.
Binomial Theorem Pascal’s Triangle
4-2 The Binomial Theorem Use Pascal’s Triangle to expand powers of binomials Use the Binomial Theorem to expand powers of binomials.
Essential Questions How do we use the Binomial Theorem to expand a binomial raised to a power? How do we find binomial probabilities and test hypotheses?
Binomial Expansion L.O. All pupils understand why binomial expansion is important All pupils understand the pattern binomial expansion follows All pupils.
11.9 Pascal’s Triangle.
11.6 Binomial Theorem & Binomial Expansion
The Binomial Theorem OBJECTIVES: Evaluate a Binomial Coefficient
©2001 by R. Villar All Rights Reserved
The binomial theorem. Pascal’s Triangle.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
6.8 – Pascal’s Triangle and the Binomial Theorem
HW: Finish HPC Benchmark 1 Review
ALGEBRA II HONORS/GIFTED - SECTION 5-7 (The Binomial Theorem)
10.4 – Pascal’s Triangle and the Binomial Theorem
Warm Up 1. 10C P4 12C P3 10C P3 8C P5.
Presentation transcript:

6.8 – Pascal’s Triangle and the Binomial Theorem

The Binomial Theorem Strategy only: how do we expand these? 1.(x + 2) 2 2.(2x + 3) 2 3.(x – 3) 3 4.(a + b) 4

The Binomial Theorem Solutions 1.(x + 2) 2 = x 2 + 2(2)x = x 2 + 4x (2x + 3) 2 = (2x) 2 + 2(3)(2x) = 4x x (x – 3) 3 = (x – 3)(x – 3) 2 = (x – 3)(x 2 – 2(3)x ) = (x – 3)(x 2 – 6x + 9) = x(x 2 – 6x + 9) – 3(x 2 – 6x + 9) = x 3 – 6x 2 + 9x – 3x x – 27 = x 3 – 9x x – 27 4.(a + b) 4 = (a + b) 2 (a + b) 2 = (a 2 + 2ab + b 2 )(a 2 + 2ab + b 2 ) = a 2 (a 2 + 2ab + b 2 ) + 2ab(a 2 + 2ab + b 2 ) + b 2 (a 2 + 2ab + b 2 ) = a 4 + 2a 3 b + a 2 b 2 + 2a 3 b + 4a 2 b 2 + 2ab 3 + a 2 b 2 + 2ab 3 + b 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4

THAT is a LOT of work! Isn’t there an easier way?

Introducing: Pascal’s Triangle Take a moment to copy the first 6 rows. What patterns do you see? Row 5 Row 6

Use Pascal’s Triangle to expand (a + b) 5. The Binomial Theorem Use the row that has 5 as its second number. In its simplest form, the expansion is a 5 + 5a 4 b + 10a 3 b a 2 b 3 + 5ab 4 + b 5. The exponents for a begin with 5 and decrease. 1a 5 b 0 + 5a 4 b a 3 b a 2 b 3 + 5a 1 b 4 + 1a 0 b 5 The exponents for b begin with 0 and increase. Row 5

Use Pascal’s Triangle to expand (x – 3) 4. The Binomial Theorem First write the pattern for raising a binomial to the fourth power Coefficients from Pascal’s Triangle. (a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 Since (x – 3) 4 = (x + (–3)) 4, substitute x for a and –3 for b. (x + (–3)) 4 = x 4 + 4x 3 (–3) + 6x 2 (–3) 2 + 4x(–3) 3 + (–3) 4 = x 4 – 12x x 2 – 108x + 81 The expansion of (x – 3) 4 is x 4 – 12x x 2 – 108x + 81.

The Binomial Theorem Use the Binomial Theorem to expand (x – y) 9. Write the pattern for raising a binomial to the ninth power. (a + b) 9 = 9 C 0 a C 1 a 8 b + 9 C 2 a 7 b C 3 a 6 b C 4 a 5 b C 5 a 4 b C 6 a 3 b C 7 a 2 b C 8 ab C 9 b 9 Substitute x for a and –y for b. Evaluate each combination. (x – y) 9 = 9 C 0 x C 1 x 8 (–y) + 9 C 2 x 7 (–y) C 3 x 6 (–y) C 4 x 5 (–y) C 5 x 4 (–y) C 6 x 3 (–y) C 7 x 2 (–y) C 8 x(–y) C 9 (–y) 9 = x 9 – 9x 8 y + 36x 7 y 2 – 84x 6 y x 5 y 4 – 126x 4 y x 3 y 6 – 36x 2 y 7 + 9xy 8 – y 9 The expansion of (x – y) 9 is x 9 – 9x 8 y + 36x 7 y 2 – 84x 6 y x 5 y 4 – 126x 4 y x 3 y 6 – 36x 2 y 7 + 9xy 8 – y 9.

Let’s Try Some Expand the following a) (x-y 5 ) 3 b)(3x-2y) 4

Let’s Try Some Expand the following (x-y 5 ) 3

Let’s Try Some Expand the following (3x-2y) 4

Let’s Try Some Expand the following (3x-2y) 4

How does this relate to probability? You can use the Binomial Theorem to solve probability problems. If an event has a probability of success p and a probability of failure q, each term in the expansion of (p + q) n represents a probability. Example: 10 C 2 * p 8 q 2 represents the probability of 8 successes in 10 tries

The Binomial Theorem Brianna makes about 90% of the shots on goal she attempts. Find the probability that Bri makes exactly 7 out of 12 consecutive goals. Since you want 7 successes (and 5 failures), use the term p 7 q 5. This term has the coefficient 12 C 5. Probability (7 out of 10) = 12 C 5 p 7 q 5 = Simplify. Bri has about a 0.4% chance of making exactly 7 out of 12 consecutive goals. = (0.9) 7 (0.1) 5 The probability p of success = 90%, or ! 5! 7!