Chapter 5 Bistability and oscillations in flow reactors Closed system: batch From non-equilibrium to equilibrium Open system: to maintain non-equilibrium.

Slides:



Advertisements
Similar presentations
Dynamic Energy Balance. Last time: well-mixed CSTR w/flow & reaction for multiple reactions: rxn #
Advertisements

Conversion and Reactor sizing
Benno Rahardyan FTSL-ITB
Conversion and Reactor Sizing
CHAPTER 3 MASS BLANCE, FLOW MODELS, AND REACTORS.
Modelling & Simulation of Chemical Engineering Systems
Environmental Engineering Dr Jawad Al-rifai Lecture no. Reactor Philadelphia University Faculty of Engineering Department of Civil Engineering.
CHOICE OF REACTOR REACTION PATH TYPE OF REACTION SYSTEM REACTOR PERFORMANCE IDEAL REACTORS REACTANTS CONCENTRATIONS REACTOR TEMPERATURE REACTOR PRESSURE.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 21.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 15.
Liquid-Liquid Extraction
Modeling of Coupled Non linear Reactor Separator Systems Prof S.Pushpavanam Chemical Engineering Department Indian Institute of Technology Madras Chennai.
Mass Balances. Fundamental Principle of (Dynamic) Mass Balances The rate at which something accumulates in a region of interest (a “control volume”) equals.
Chaos and Control in Combustion Steve Scott School of Chemistry University of Leeds.
Development of Dynamic Models Illustrative Example: A Blending Process
Modelling Flow Distributed Oscillations In The CDIMA Reaction Jonathan R Bamforth, Serafim Kalliadasis, John H Merkin, Stephen K Scott School of Chemistry,
REACTORS By: Shaimaa Soarkati, CHBE446 Section: 0301 A.James Clark School of Engineering By: Shaimaa Soarkati, CHBE446 Section: 0301 A.James Clark School.
بسم الله الرحمن الرحيم Advanced Control Lecture two 1- A modeling procedure (Marlin, Chapter 3) 2- Empirical modeling (Smith & Corripio, Chapter 7) 3-
Chapter 8 Applications In physics In biology In chemistry In engineering In political sciences In social sciences In business.
THEORETICAL MODELS OF CHEMICAL PROCESSES
A Primer in Bifurcation Theory for Computational Cell Biologists John J. Tyson Virginia Polytechnic Institute & Virginia Bioinformatics Institute
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 22.
Selected Differential System Examples from Lectures.
By Noor Amirah Abdul Halim.  Parallel reactions  Series reactions  Complex reactions (parallel and series reactions)  Independent reactions.
(PART B) By; Mrs Hafiza Binti Shukor ERT 208/4 REACTION ENGINEERING
Lecture note for /445. What is a dynamical system? In an informal way, one can think of a dynamical system as being either of two things: - A MATHEMATICAL.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
Selected Differential System Examples from Lectures
Review: Simultaneous Internal Diffusion & External Diffusion
Mole balance for chemical reaction engineering (Design Equations for reactors) Lec 3 week 3.
CE 548 Introduction to Process Analysis and Selection
ITK-330 Chemical Reaction Engineering
Session 7 Integral and differential method. Integral method of analysis of data First order reversible reaction At equilibrium dC A /dt = 0.
Lecture 1: Kinetics of Substrate Utilization and Product Formation
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. L23-1 Dead Zone Review: Nonideal Flow.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 17.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 29.
Dr. R. Nagarajan Professor Dept of Chemical Engineering IIT Madras
بسم الله الرحمن الرحيم Advanced Control Lecture one Mohammad Ali Fanaei Dept. of Chemical Engineering Ferdowsi University of Mashhad Reference: Smith &
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
1 CHEM-E7130 Process Modeling Exercise. 2 Exercises 1&2, 3&4 and 5&6 are related. Start with one of the packages and then continue to the others. You.
Reactors.
Isothermal reactor design
Kinetics and Reactor Design Kinetics and Reactor Design CHE-402 INSTRUCTOR: Dr. Nabeel Salim Abo-Ghander Chemical Reactions and Rate of Reactions Chapter.
CHAPTER VI BLOCK DIAGRAMS AND LINEARIZATION
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 25.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 24.
2nd Order Reaction Recycle Performance Plot
CHAPTER 2 MASS BALANCE and APPLICATION
Reactor Design. تحت شعار العيد فرحة : الجمهور : طبعا النهاردة نص يوم علشان العيد خلص امبارح؟ أنا : لأ الجمهور : يعني النهاردة هناخد سكشن؟ أنا : ونص الجمهور.
生物电分析化学 Electroanalytical Chemsitry and Its Biological Applications 主讲人:刘宏 教授 2014 年秋.
CHE 354 Chemical Reactor Design
ChE 402: Chemical Reaction Engineering
A First Course on Kinetics and Reaction Engineering
A First Course on Kinetics and Reaction Engineering
MASS BALANCE REACTOR THEORY
The General Mole Balance & Ideal Reactors
CE Introduction to Environmental Engineering and Science
CHAPTER VI BLOCK DIAGRAMS AND LINEARIZATION
Reactions In previous lectures materials flows were analyzed as steady-state processes. Time was not a variable. In many processes time variability is.
A First Course on Kinetics and Reaction Engineering
Chapter 2 Limits and Continuity Section 2.3 Continuity.
EXAMPLE 1 – Diluting a Toxic Water Supply (Elementary)
Qualitative Analysis of Spruce Budworm Outbreaks
Distribution of Residence Times for Reactors
Chapter 2 Limits and Continuity Section 2.3 Continuity.
Steady-state Nonisothermal reactor Design Part I
Chapter 2 Limits and Continuity Section 2.3 Continuity.
13. Reactor Engineering: Reactor Design
Presentation transcript:

Chapter 5 Bistability and oscillations in flow reactors Closed system: batch From non-equilibrium to equilibrium Open system: to maintain non-equilibrium state reactants flow in and products flow out If the reactor is well stirred, we call it CSTR(continuous-flow stirred tank reactor) Molecules can spend different time at the CSTR because of flowing. The average time spent in reactor is called the mean residence time T res = volume/ flow rate. The system can display steady state, bistable state, oscillations, chaos in a CSTR &program=oscillat reactants stirrer

5.1 Steady state and bistability Example: Iodate - arsenite system IO I - +3H3AsO 3 → 6 I - +3 H3AsO 4 IO I - +3H3AsO 3 → 6 I - +3 H3AsO 4 At high flow rate, the concentrations of reactants in a CSTR have not bigger different with the inflow concentrations, this branch is known as flow branch( 流动分枝 ). At high flow rate, the concentrations of reactants in a CSTR have not bigger different with the inflow concentrations, this branch is known as flow branch( 流动分枝 ). At low flow rate, the system in a CSTR approach the thermodynamic equilibrium, the curve is called thermodynamic branch( 热力学分枝 ) At low flow rate, the system in a CSTR approach the thermodynamic equilibrium, the curve is called thermodynamic branch( 热力学分枝 ) As the flowrate is decreased, the system changes from flow branch to thermodynamic branch Attention: when flowrate change, the system evolve to new state for short(low flowrate) or long (high flow rate)time. Attention: when flowrate change, the system evolve to new state for short(low flowrate) or long (high flow rate)time. reacta nts stirrer

Situations: Situations: 1. When changing flowrate up or down, the plot of steady concentrations have only one curve. But during the some region of flowrate, there is a quick change of concentration from one branch to another branch. flow diagram

2. Thermodynamic branch and flow branch overlap as the direction of changing flowrate is opposite. This is phenomena is named bistabilty. Within the region of bistability, the actual state selected depends on not only the parameter but also the operational history. When the flowrate is up or down, the state jumps or fall off in delay. This phenomena is called hysteresis When the flowrate is up or down, the state jumps or fall off in delay. This phenomena is called hysteresis This abrupt changes in compositions is discontinuous responded to the continuous changes in the operating conditions. This is bifurcation. This abrupt changes in compositions is discontinuous responded to the continuous changes in the operating conditions. This is bifurcation.

5.2 Dynamic equations for flow reactors The changes of concentrations in flow reactor result from the net flow and reaction The changes of concentrations in flow reactor result from the net flow and reaction V dA/dt=q(A 0 -A)+VR dA/dt=k0(A0-A)+R k 0 =q/V time -1 For iodate-arsenite system IO3-+5I-+6H+=6I-+3H2O R=(K a1 +K a2 [I-])[I-][ IO 3 - ][H+] 2 Mixed autocalysis R=(K a1 +K a2 [I-])[I-][ IO 3 - ][H+] 2 Mixed autocalysis d[IO 3 -]/dt=k0([[IO 3 -] 0 -[IO 3 -])- (Ka1+Ka2[I-])[I-][ IO3-][H+] 2

5.3 Steady state solutions: flow diagrams 5.3 Steady state solutions: flow diagrams Considering cubic autocatalysis only in iodate-arsenite system d[IO 3 - ]/dt=k 0 ([[IO 3 -] 0 -[IO 3 -])- (Ka1+Ka2[I-])[I-][ IO3-][H+] 2 Ka1=0 Ka1=0 k c =ka2[H + ]2 k c =ka2[H + ]2 d[IO 3 -]/dt=k0([[IO 3 - ] 0 -[IO 3 - ])- k c [I - ] 2 [ IO3-] conservation of element iodine conservation of element iodine [I-] 0 +[IO3-] 0 =[I-]+[IO3-] [I-] 0 +[IO3-] 0 =[I-]+[IO3-] a=[IO3-], b=[I-] a=[IO3-], b=[I-] a0+b0=a+b a0+b0=a+b da/dt=k 0 (a0-a)-k c a(a0+b0-a) 2 da/dt=k 0 (a0-a)-k c a(a0+b0-a) 2 steady state da/dt=0 steady state da/dt=0 a=a ss a=a ss k 0 (a-a ss )-k c a ss (a0+b0-a) 2 =0 one or three solution k 0 (a-a ss )-k c a ss (a0+b0-a) 2 =0 one or three solution k 0 (a-a ss )=k c a ss (a0+b0-a) 2 a ss b0 和 k0 有关 k 0 (a-a ss )=k c a ss (a0+b0-a) 2 a ss 与 b0 和 k0 有关

dimensionless equation α ss =a ss /ao β 0 =b0/a0 К 0 =k0/kc a0 2 α ss =a ss /ao β 0 =b0/a0 К 0 =k0/kc a0 2 К 0 (1-α ss )= α ss (1+β 0 -α ss ) 2 К 0 (1-α ss )= α ss (1+β 0 -α ss ) 2 F R F R F=R steady state α ss F=R steady state α ss when β 0 =0.2 when β 0 =0.2 1-α ss =0 reaction begin, R: curve parabola F: line only one intersection only one intersection When β 0 =0.05 three intersections two are stable States are decided by flowrate, [I] 0 and history States are decided by flowrate, [I] 0 and history

5.4 Turning points and tangancies Line2,4 are tangential to R , The system is bistable between line2 and line 4 Line2,4 are tangential to R , The system is bistable between line2 and line 4 The condition for tangancy F=R dF/d α =dR/d α F=R dF/d α =dR/d α The stable concentration of α α ss ±=0.25{3±(1-8β0)0.5} To makeα ss real, β0<1/8 The flowrate of points of tangancies( Turning points) Phase diagram Phase diagram

5.5 Nodes and saddles: from bistable states to saddle-node bifurcation In bistable region, there are three steady states, (or three branchs), two are stable, the middle is unstable, How to understand it? For their stability, We use the potential rate=-dα/dt= α(1+β0-α) 2 -К0(1-α) rate=-dα/dt= α(1+β0-α) 2 -К0(1-α) V=1/2 m Rate 2 V=1/2 m Rate 2 dV/drate=Rate dV/drate=Rate V=∫Rate d(Rate) V=∫Rate d(Rate) V=0.5(1+β0)2α2-2/3(1+β0)α3+1/4α4- К 0 α(1-1/2α)+V0 At one parameter, Vα1, α3 has the minimum as node, and Vα2 has the maxmum as saddle. when the parameter changes to another, the maxmum as saddle. when the parameter changes to another, Vα3 merges with Vα2 from node to saddle. This process is called saddle-node bifurcation.

5.6 Designing oscillatory reactions from bistable systems A Nonlinear feedback reaction (quadratic and cubic) + CSTR: only bistability ? Feedback---Clock (batch)------Bistabilty(CSTR) Only a feedback can not bring out oscillations: a+b=2b Degree of Freedom =1 a fixed then b is fixed a+b=a0+b0 Degree of Freedom =1 a fixed then b is fixed a+b=a0+b0 B For oscillations, the system must have two degrees of freedom a+b=2b a+b=2b b+c=p b+c=p C model analysis for CSTR oscillations a+2b  3b kc R1 a+2b  3b kc R1 b+c  BC k 1 k -1 R2 b+c  BC k 1 k -1 R2 independent variables two b c or bc independent variables two b c or bc

assumption: assumption: flowing in a b flowing in a b c and bc: no flowing or flowout k 1, k -1 small c and bc: no flowing or flowout k 1, k -1 small initial concentrations: a 0 b 0 c 0 initial concentrations: a 0 b 0 c 0 Concentrations at specific time: a b c, bc=x a0+b0=a+b(k 1, k -1 small ) Concentrations at specific time: a b c, bc=x a0+b0=a+b(k 1, k -1 small ) γ=x/a0 γ0=c0/a0 β=b/a0 γ=x/a0 γ0=c0/a0 β=b/a0 Non negative feedback ( R2 un-included) Non negative feedback ( R2 un-included) Negative included Negative included

Inflow rate can be auto-vary and cycled B(β) big b+c  BC BC (γ) rise B(β) big b+c  BC BC (γ) rise  κ 0,eff increases  κ 0,eff increases system move automaticallyto right system move automaticallyto right, make B drop at turning point,and, make B drop at turning point,and b (β) +c  BC (γ) R2 b (β) +c  BC (γ) R2 inducing : a+2b=3b inducing : a+2b=3b Jump to low branch. Jump to low branch. B small, R2 equilibrium to left, BC (γ) drops, κ0,eff decreases, system moves to left, then B increase to turning point, jump up. So oscillations repeated. B small, R2 equilibrium to left, BC (γ) drops, κ0,eff decreases, system moves to left, then B increase to turning point, jump up. So oscillations repeated.

C To understand dynamics from nullclines β nullcline γ nullcline intersection situation have four possibilities. β nullcline γ nullcline intersection situation have four possibilities. Bistable high β low β oscillations Bistable high β low β oscillations Cross-shapes diagrams Parameter κ0 γ0 ‘ Cross-shapes diagrams Parameter κ0 γ0 ‘ a bistable d oscillations b high β c lowβ a bistable d oscillations b high β c lowβ near cusp perturbation oscllations or go to stable state near cusp perturbation oscllations or go to stable state If b c display oscillations, then a is the field of birhythmicity and d is the field of complex If b c display oscillations, then a is the field of birhythmicity and d is the field of complex oscillations or chaos oscillations or chaos

5.7 Applications of Cross-shaped Diagram Technique Bistable states in CSTR + Negative feedback Bistable states in CSTR + Negative feedback Autocatalysis + autocatalyst consume,This make the k0,eff change from parameter to variable. Complex dynamics such as oscillations take places. Autocatalysis + autocatalyst consume,This make the k0,eff change from parameter to variable. Complex dynamics such as oscillations take places. IO3--AsO3- iodide autocatlysis, CIO2- as negative substances IO3-+5I-+6H+=3I2+3H2O IO3-+5I-+6H+=3I2+3H2O I2+ H2O+H3AsO3=2I-+H2AsO4-+2H+ I2+ H2O+H3AsO3=2I-+H2AsO4-+2H+ d[I-]/dt=(ka1+Ka2[I-])[I-][IO3-][H+]2 d[I-]/dt=(ka1+Ka2[I-])[I-][IO3-][H+]2 IO3--AsO3- — ClO2- oscillations IO3--AsO3- — ClO2- oscillations Landolt reaction + Fe(CN) 6 3- V Gaspar and k. Showalter JPC, 94, 4973

2 0 ℃ 30 ℃ 40 ℃

5.8 Complex oscillations and Chaos More than two variables, The system can display complex oscillations, chaos Bifurcation to chaos Period-doubling quansiperiod Period-doubling quansiperiod

Mixed-Mode oscillations

5.9 mushroom and isola

model explaination model explaination A+2B=3B Rate=kcab2 A+2B=3B Rate=kcab2 B=C rate=ktb B=C rate=ktb a+b+c=a0+b0 a+b+c=a0+b0 Steady state condition P= (k0+kt) 2 /k0 dynamical flowrate

P= (k0+kt) 2 /k0 Situation1 : k0>>kt P → k0 Situation1 : k0>>kt P → k0 Situation2 : k0 → 0 P → ∞ Situation2 : k0 → 0 P → ∞ Situation3 : Pmin=4kt Situation3 : Pmin=4kt Monostability if P min > F tangancy