 期中测验时间:本周五上午 9 : 40  教师 TA 答疑时间 : 周三晚上 6 : 00—8 : 30  地点:软件楼 315 房间,  教师 TA :李弋老师  开卷考试.

Slides:



Advertisements
Similar presentations
CSE 211 Discrete Mathematics
Advertisements

Discrete Mathematics University of Jazeera College of Information Technology & Design Khulood Ghazal Connectivity Lecture _13.
 Theorem 5.9: Let G be a simple graph with n vertices, where n>2. G has a Hamilton circuit if for any two vertices u and v of G that are not adjacent,
Chapter 8 Topics in Graph Theory
Chapter 9 Graphs.
Lecture 5 Graph Theory. Graphs Graphs are the most useful model with computer science such as logical design, formal languages, communication network,
22C:19 Discrete Math Graphs Fall 2010 Sukumar Ghosh.
Walks, Paths and Circuits Walks, Paths and Circuits Sanjay Jain, Lecturer, School of Computing.
Graph-02.
1 Slides based on those of Kenneth H. Rosen Slides by Sylvia Sorkin, Community College of Baltimore County - Essex Campus Graphs.
1 Lecture 5 (part 2) Graphs II Euler and Hamiltonian Path / Circuit Reading: Epp Chp 11.2, 11.3.
Section 2.1 Euler Cycles Vocabulary CYCLE – a sequence of consecutively linked edges (x 1,x2),(x2,x3),…,(x n-1,x n ) whose starting vertex is the ending.
Discrete Structures Chapter 7B Graphs Nurul Amelina Nasharuddin Multimedia Department.
Discrete Structures Chapter 7A Graphs Nurul Amelina Nasharuddin Multimedia Department.
CTIS 154 Discrete Mathematics II1 8.2 Paths and Cycles Kadir A. Peker.
1 Section 8.4 Connectivity. 2 Paths In an undirected graph, a path of length n from u to v, where n is a positive integer, is a sequence of edges e 1,
MATH 310, FALL 2003 (Combinatorial Problem Solving) Lecture 5,Wednesday, September 10.
MCA 520: Graph Theory Instructor Neelima Gupta
KNURE, Software department, Ph , N.V. Bilous Faculty of computer sciences Software department, KNURE Discrete.
Graphs Rosen 8.1, 8.2. There Are Many Uses for Graphs! Networks Data organizations Scene graphs Geometric simplification Program structure and processes.
1/22/03Tucker, Applied Combinatorics, Section EDGE COUNTING TUCKER, APPLIED COMBINATORICS, SECTION 1.3, GROUP B Michael Duquette & Amanda Dargie.
9.2 Graph Terminology and Special Types Graphs
GRAPH Learning Outcomes Students should be able to:
Graph Theoretic Concepts. What is a graph? A set of vertices (or nodes) linked by edges Mathematically, we often write G = (V,E)  V: set of vertices,
 期中测验时间:  11 月 4 日  课件 集合,关系,函数,基数, 组合数学.  Ⅰ Introduction to Set Theory  1. Sets and Subsets  Representation of set:  Listing elements, Set builder.
Fall 2015 COMP 2300 Discrete Structures for Computation Donghyun (David) Kim Department of Mathematics and Physics North Carolina Central University 1.
Euler and Hamilton Paths. Euler Paths and Circuits The Seven bridges of Königsberg a b c d A B C D.
CSNB143 – Discrete Structure Topic 9 – Graph. Learning Outcomes Student should be able to identify graphs and its components. Students should know how.
1 CS104 : Discrete Structures Chapter V Graph Theory.
Based on slides by Y. Peng University of Maryland
Graphs.  Definition A simple graph G= (V, E) consists of vertices, V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements.
Week 11 - Monday.  What did we talk about last time?  Binomial theorem and Pascal's triangle  Conditional probability  Bayes’ theorem.
Fall 2015 COMP 2300 Discrete Structures for Computation Donghyun (David) Kim Department of Mathematics and Physics North Carolina Central University 1.
§ 每周五交作业,作业成绩占总成绩的 10% ; § 平时不定期的进行小测验,占总成绩的 20% ; § 期中考试成绩占总成绩的 20% ;期终考 试成绩占总成绩的 50% § 每周五下午 1 ; 00—3 : 00 ,答疑 § 地点:软件楼 301.
September1999 CMSC 203 / 0201 Fall 2002 Week #13 – 18/20/22 November 2002 Prof. Marie desJardins.
Chapter 5 Graphs  the puzzle of the seven bridge in the Königsberg,  on the Pregel.
 周二下午 1 : 30—4 : 15 在软件楼 4 楼密码与信 息安全实验室答疑  周三下午 1 : 15 到 3 : 15 期中测验.
Lecture 10: Graph-Path-Circuit
Chap. 11 Graph Theory and Applications 1. Directed Graph 2.
Graphs 9.1 Graphs and Graph Models أ. زينب آل كاظم 1.
Graph theory and networks. Basic definitions  A graph consists of points called vertices (or nodes) and lines called edges (or arcs). Each edge joins.
MAT 2720 Discrete Mathematics Section 8.2 Paths and Cycles
Lecture 52 Section 11.2 Wed, Apr 26, 2006
 Quotient graph  Definition 13: Suppose G(V,E) is a graph and R is a equivalence relation on the set V. We construct the quotient graph G R in the follow.
Chapter 11 - Graph CSNB 143 Discrete Mathematical Structures.
Chapter 9: Graphs.
 Hamilton paths.  Definition 20: A Hamilton paths is a path that contains each vertex exactly once. A Hamilton circuit is a circuit that contains.
Week 11 - Wednesday.  What did we talk about last time?  Graphs  Paths and circuits.
Chap 7 Graph Def 1: Simple graph G=(V,E) V : nonempty set of vertices E : set of unordered pairs of distinct elements of V called edges Def 2: Multigraph.
1. 期中测验时间和地点: 11 月 4 日, 上午 9:40—11 : 40 地点: 教室 2. 答疑时间和地点: 1)11 月 1 日 ( 周五 )13:00—15:00 软件楼 319 2)11 月 2 日和 3 日, 14:00—17:00 软件楼 3 楼 机房讨论室.
1 GRAPH Learning Outcomes Students should be able to: Explain basic terminology of a graph Identify Euler and Hamiltonian cycle Represent graphs using.
9.5 Euler and Hamilton graphs. 9.5: Euler and Hamilton paths Konigsberg problem.
1 Lecture 5 (part 2) Graphs II (a) Circuits; (b) Representation Reading: Epp Chp 11.2, 11.3
Leda Demos By: Kelley Louie Credits: definitions from Algorithms Lectures and Discrete Mathematics with Algorithms by Albertson and Hutchinson graphics.
رياضيات متقطعة لعلوم الحاسب MATH 226. Chapter 10.
An Introduction to Graph Theory
Applied Discrete Mathematics Week 14: Trees
Graphs Hubert Chan (Chapter 9) [O1 Abstract Concepts]
Graph theory Definitions Trees, cycles, directed graphs.
Discrete Structures – CNS2300
Can you draw this picture without lifting up your pen/pencil?
Introduction to Graph Theory Euler and Hamilton Paths and Circuits
G-v, or G-{v} When we remove a vertex v from a graph, we must remove all edges incident with the vertex v. When a edge is removed from a graph, without.
Euler and Hamilton Paths
Graphs G = (V, E) V are the vertices; E are the edges.
Chapter 5 Graphs the puzzle of the seven bridge in the Königsberg,
N(S) ={vV|uS,{u,v}E(G)}
Definition 8: Graphs that have a number assigned to each edge or each vertex are called weighted graphs weighted digraphs.
Applied Combinatorics, 4th Ed. Alan Tucker
Applied Discrete Mathematics Week 13: Graphs
Presentation transcript:

 期中测验时间:本周五上午 9 : 40  教师 TA 答疑时间 : 周三晚上 6 : 00—8 : 30  地点:软件楼 315 房间,  教师 TA :李弋老师  开卷考试

 Connectivity in directed graphs  Definition 16: Let n be a nonnegative integer and G be a directed graph. A path of length n from u to v in G is a sequence of edges e 1,e 2,…,e n of G such that e 1 =(v 0 =u,v 1 ), e 2 =(v 1,v 2 ), …, e n =(v n-1,v n =v), and no edge occurs more than once in the edge sequence. A path is called simple if no vertex appear more than once. A circuit is a path that begins and ends with the same vertex. A circuit is simple if the vertices v 0,v 1,…,v n-1 are all distinct.

 (e1,e2,e7,e1,e2,e9)is not a path  (e1,e2,e7,e6,e9)is a path from a to e  (e1,e2,e9)is a path from a to e, is a simple path.  (a,b,c,e) (e1,e2,e7,e1,e2,e7)is not a circuit (e1,e2,e7,e6,e12) is a circuit (e1,e2,e7) is a simple circuit. (a,b,c,a)

 Definition 17: A directed graph is strongly connected if there is a path from a to b and from b to a whenever a and b are vertices in the graph. A directed graph is connected directed graph if there is a path from a to b or b to a whenever a and b are vertices in the graph. A directed graph is weakly connected if there is a path between every pair vertices in the underlying undirected graph.

 (a)strongly connected  (b)connected directed  (c)weakly connected  strongly connected components: G 1,G 2,…,G ω

 V ={v 1,v 2,v 3,v 4,v 5,v 6,v 7, v 8 }  V 1 ={v 1,v 7,v 8 }, V 2 ={v 2,v 3,v 5,v 6 }, V 3 ={v 4 },  strongly connected components :  G(V 1 ),G(V 2 ),G(V 3 )

 Bipartite graph  Definition18: A simple graph is called bipartite if its vertex set V can be partioned into two disjoint sets V 1 and V 2 such that every edge in the graph connects a vertex in V 1 and a vertex in V 2. (so that no edge in G connects either two vertices in V 1 or two vertices in V 2 ).The symbol K m,n denotes a complete bipartite graph: V 1 has m vertices and contains all edges joining vertices in V 2, and V 2 has n vertices and contains all edges joining vertices in V 1.  K 3,3, K 2,3 。 V 1 ={x 1,x 2,x 3, x 4 }, V 2 ={y 1, y 2, y 3, y 4, y 5 }, or V' 1 ={x 1,x 2,x 3, y 4, y 5 }, V' 2 ={y 1, y 2, y 3, x 4 },

 The graph is not bipartite  Theorem 5.5:A graph is bipartite iff it does not contain any odd simple circuit.  Proof:(1)Let G be bipartite, we prove it does not contain any odd simple circuit.  Let C=(v 0,v 1,…,v m,v 0 ) be an simple circuit of G

 (2)G does not contain any odd simple circuit, we prove G is bipartite  Since a graph is bipartite iff each component of it is, we may assume that G is connected.  Pick a vertex u  V,and put V 1 ={x|l(u,x) is even simple path},and V 2 ={y|l(u,y) is odd simple path}  1)We prove V(G)=V 1 ∪ V 2, V 1 ∩V 2 =   Let v  V 1 ∩V 2,  there is an odd simple circuit in G such that these edges of the simple circuit  p 1 ∪ p 2  each edge joins a vertex of V 1 to a vertex of V 2

 2) we prove that each edge of G joins a vertex of V 1 and a vertex V 2  If it has a edge joins two vertices y 1 and y 2 of V 2  odd simple path  (u,u 1,u 2, ,u 2n,y 1,y 2 ),even path  y 2  u i (1  i  2n)  There is u j so that y 2 =u j. The path (u,u 1,u 2, ,u j-1, y 2,u j+1, ,u 2n,y 1,y 2 ) from u to y 2,  Simple path (u,u 1,u 2, ,u j-1,y 2 ),simple circuit (y 2,u j+1, ,u 2n,y 1,y 2 )  j is odd number  j is even number

5.3Euler and Hamilton paths  Euler paths  Definition 19: A path in a graph G is called an Euler path if it includes every edge exactly once. An Euler circuit is an Euler path that is a circuit  Theorem 5.6: A connected multigraph has an Euler circuit if and only if each of its vertices has even degree.

 Proof:(1)Let connected multigraph G have an Euler circuit, then each of its vertices has even degree.  (v 0,v 1,…,v i, …,v k ),v 0 =v k  First note that an Euler circuit begins with a vertex v 0 and continues with an edge incident to v 0, say {v 0,v 1 }. The edge {v 0,v 1 } contributes one to d(v 0 ).  Thus each of G’s vertices has even degree.

 (2)Suppose that G is a connected multigraph and the degree of every vertex of G is even.  Let us apply induction on the number of edges of G  1)e=1,loop The graph is an Euler circuit. The result holds 2) Suppose that result holds for e  m e=m+1 ,  (G)≥2. By the theorem 5.4, there is a simple circuit C in the graph G

 If G=C, the result holds  If E(G)-E(C) , Let H=G-C, The degree of every vertex of H is even and e(H)  m  ① If H is connected, by the inductive hypothesis, H has an Euler circuit C 1 ,  C=(v 0, v 1,…,v k-1, v 0 )  ② When H is not connected, H has l components, The degree of every vertex of components is even and the number of edges less than m. By the inductive hypothesis,each of components has an Euler circuit. H i  G is connected

the puzzle of the seven bridge in the Königsberg d(A)=3. The graph is no Euler circuit. Theorem 5.7: A connected multigraph has an Euler path but not an circuit if and only if it has exactly two vertices of odd degree. d(A)=d(D)=d(C)=3, d(D)=5 The graph is no Euler path.

 d(A)=d(B)=d(E)=4, d(C)=d(D)=3,  Euler path:C,B,A,C,E,A,D,B,E,D

 Hamilton paths

 Definition 20: A Hamilton paths is a path that contains each vertex exactly once. A Hamilton circuit is a circuit that contains each vertex exactly once except for the first vertex, which is also the last.

 Theorem 5.8: Suppose G(V,E) that has a Hamilton circuit, then for each nonempty proper subset S of V(G), the result which  (G- S)≤|S| holds, where G-S is the subgraph of G by omitting all vertices of S from V(G).  (G-S)=1 , |S|=2 The graph G has not any Hamilton circuit, if there is a nonempty purely subgraph S of V(G) so that  (G- S)>|S|.

 Omit {b,h,i} from V,   (G-S)=4>3=|S| , The graph has not any Hamilton circuit

 If  (G-S)≤|S| for each nonempty proper subset S of V(G), then G has a Hamilton circuit or has not any Hamilton circuit.  For example: Petersen graph

 Proof: Let C be a Hamilton circuit of G(V,E). Then  (C-S)≤|S| for each nonempty proper subset S of V  Why?  Let us apply induction on the number of elements of S.  |S|=1,  The result holds  Suppose that result holds for |S|=k.  Let |S|=k+1  Let S=S' ∪ {v} , then |S'|=k  By the inductive hypothesis,  (C-S')≤|S'|  V(C-S)=V(G-S)  Thus C-S is a spanning subgraph of G-S  Therefore  (G-S)≤  (C-S)≤|S|

 Theorem 5.9: Let G be a simple graph with n vertices, where n>2. G has a Hamilton circuit if for any two vertices u and v of G that are not adjacent, d(u)+d(v)≥n. n=8,d(u)=d(v)=3, u and v are not adjacent, d(u)+d(v)=6<8, But there is a Hamilton circuit in the graph. Note:1)if G has a Hamilton circuit, then G has a Hamilton path Hamilton circuit :v 1,v 2,v 3,…v n,v 1 Hamilton path:v 1,v 2,v 3,…v n, 2)If G has a Hamilton path, then G has a Hamilton circuit or has not any Hamilton circuit

 Exercise P302 1,2,3,5,6  P306 3,4,5,6,18