CS590M 2008 Fall: Paper Presentation

Slides:



Advertisements
Similar presentations
The Helmholtz Machine P Dayan, GE Hinton, RM Neal, RS Zemel
Advertisements

2007 NIPS Tutorial on: Deep Belief Nets
CSC321 Introduction to Neural Networks and Machine Learning Lecture 21 Using Boltzmann machines to initialize backpropagation Geoffrey Hinton.
Greedy Layer-Wise Training of Deep Networks
Deep Belief Nets and Restricted Boltzmann Machines
Deep Learning Bing-Chen Tsai 1/21.
CIAR Second Summer School Tutorial Lecture 2a Learning a Deep Belief Net Geoffrey Hinton.
Stochastic Neural Networks Deep Learning and Neural Nets Spring 2015.
CSC321: 2011 Introduction to Neural Networks and Machine Learning Lecture 7: Learning in recurrent networks Geoffrey Hinton.
Advanced topics.
Stacking RBMs and Auto-encoders for Deep Architectures References:[Bengio, 2009], [Vincent et al., 2008] 2011/03/03 강병곤.
Tutorial on: Deep Belief Nets
What kind of a Graphical Model is the Brain?
Presented by: Mingyuan Zhou Duke University, ECE September 18, 2009
CIAR Summer School Tutorial Lecture 2b Learning a Deep Belief Net
Deep Learning.
Wake-Sleep algorithm for Representational Learning
Deep Belief Networks for Spam Filtering
Restricted Boltzmann Machines and Deep Belief Networks
CSC321: Introduction to Neural Networks and Machine Learning Lecture 20 Learning features one layer at a time Geoffrey Hinton.
Deep Boltzman machines Paper by : R. Salakhutdinov, G. Hinton Presenter : Roozbeh Gholizadeh.
Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero
CSC2535: 2013 Advanced Machine Learning Lecture 3a: The Origin of Variational Bayes Geoffrey Hinton.
Can computer simulations of the brain allow us to see into the mind? Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto.
CIAR Second Summer School Tutorial Lecture 2b Autoencoders & Modeling time series with Boltzmann machines Geoffrey Hinton.
How to do backpropagation in a brain
Using Fast Weights to Improve Persistent Contrastive Divergence Tijmen Tieleman Geoffrey Hinton Department of Computer Science, University of Toronto ICML.
CSC2535: Computation in Neural Networks Lecture 11: Conditional Random Fields Geoffrey Hinton.
An efficient way to learn deep generative models Geoffrey Hinton Canadian Institute for Advanced Research & Department of Computer Science University of.
Varieties of Helmholtz Machine Peter Dayan and Geoffrey E. Hinton, Neural Networks, Vol. 9, No. 8, pp , 1996.
Highlights of Hinton's Contrastive Divergence Pre-NIPS Workshop Yoshua Bengio & Pascal Lamblin USING SLIDES FROM Geoffrey Hinton, Sue Becker & Yann Le.
Learning Lateral Connections between Hidden Units Geoffrey Hinton University of Toronto in collaboration with Kejie Bao University of Toronto.
Geoffrey Hinton CSC2535: 2013 Lecture 5 Deep Boltzmann Machines.
CIAR Second Summer School Tutorial Lecture 1a Sigmoid Belief Nets and Boltzmann Machines Geoffrey Hinton.
CSC321: Neural Networks Lecture 24 Products of Experts Geoffrey Hinton.
CSC 2535 Lecture 8 Products of Experts Geoffrey Hinton.
CSC2535 Lecture 4 Boltzmann Machines, Sigmoid Belief Nets and Gibbs sampling Geoffrey Hinton.
CSC321: Introduction to Neural Networks and Machine Learning Lecture 18 Learning Boltzmann Machines Geoffrey Hinton.
CSC2515: Lecture 7 (post) Independent Components Analysis, and Autoencoders Geoffrey Hinton.
CIAR Summer School Tutorial Lecture 1b Sigmoid Belief Nets Geoffrey Hinton.
How to learn a generative model of images Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto.
CSC321: Introduction to Neural Networks and Machine Learning Lecture 19: Learning Restricted Boltzmann Machines Geoffrey Hinton.
Boltzman Machines Stochastic Hopfield Machines Lectures 11e 1.
CSC2515 Lecture 10 Part 2 Making time-series models with RBM’s.
Cognitive models for emotion recognition: Big Data and Deep Learning
Convolutional Restricted Boltzmann Machines for Feature Learning Mohammad Norouzi Advisor: Dr. Greg Mori Simon Fraser University 27 Nov
Preliminary version of 2007 NIPS Tutorial on: Deep Belief Nets Geoffrey Hinton Canadian Institute for Advanced Research & Department of Computer Science.
Deep learning Tsai bing-chen 10/22.
CSC2535 Lecture 5 Sigmoid Belief Nets
CSC2515 Fall 2008 Introduction to Machine Learning Lecture 8 Deep Belief Nets All lecture slides will be available as.ppt,.ps, &.htm at
Neural Networks William Cohen [pilfered from: Ziv; Geoff Hinton; Yoshua Bengio; Yann LeCun; Hongkak Lee - NIPs 2010 tutorial ]
CSC321 Lecture 24 Using Boltzmann machines to initialize backpropagation Geoffrey Hinton.
Deep Belief Network Training Same greedy layer-wise approach First train lowest RBM (h 0 – h 1 ) using RBM update algorithm (note h 0 is x) Freeze weights.
CSC 2535: Computation in Neural Networks Lecture 10 Learning Deterministic Energy-Based Models Geoffrey Hinton.
CSC Lecture 23: Sigmoid Belief Nets and the wake-sleep algorithm Geoffrey Hinton.
CSC321 Lecture 27 Using Boltzmann machines to initialize backpropagation Geoffrey Hinton.
Some Slides from 2007 NIPS tutorial by Prof. Geoffrey Hinton
Learning Deep Generative Models by Ruslan Salakhutdinov
Deep Feedforward Networks
Energy models and Deep Belief Networks
CSC321: Neural Networks Lecture 22 Learning features one layer at a time Geoffrey Hinton.
All lecture slides will be available as .ppt, .ps, & .htm at
Multimodal Learning with Deep Boltzmann Machines
Deep Learning Qing LU, Siyuan CAO.
Department of Electrical and Computer Engineering
Deep Architectures for Artificial Intelligence
Deep Belief Nets and Ising Model-Based Network Construction
2007 NIPS Tutorial on: Deep Belief Nets
CSC321 Winter 2007 Lecture 21: Some Demonstrations of Restricted Boltzmann Machines Geoffrey Hinton.
CSC 2535: Computation in Neural Networks Lecture 9 Learning Multiple Layers of Features Greedily Geoffrey Hinton.
Presentation transcript:

CS590M 2008 Fall: Paper Presentation Deep Belief Nets Presenters: Sael Lee, Rongjing Xiang, Suleyman Cetintas, Youhan Fang Department of Computer Science, Purdue University Major reference paper: Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554

Outline Introduction Complementary prior Restricted Boltzmann machines Deep Belief networks Applications Papers

What is Deep Belief Network(DBN)? DBNs are stacks of restricted Boltzmann machines forming deep (multi-layer) architecture. 2000 top-level neurons 500 neurons 28x28 pixel image (784 neurons) h2 data h1 h3 RBM

Deep Networks Why go deep?? Problem with deep? Insufficient depth can require more computational elements, than architectures whose depth is matches to the task. Provide simpler more descriptive model of many problems. Problem with deep? Many cases, deep nets are hard to optimize. Neural Networks Deep Networks Deep Belief Nets.

Belief Nets (Bayesian Network) A belief net is a directed acyclic graph composed of stochastic variables. It is easy to generate an unbiased samples at the leaf nodes, so we can see what kinds of data the network believes in. It is hard to infer the posterior distribution over all possible configurations of hidden causes. (explaining away effect) It is hard to even get a sample from the posterior. So how can we learn deep belief nets that have millions of parameters? -> use Restrictive Boltzmann machines for each layer!! Stochastic hidden cause visible effect We will use nets composed of layers of stochastic binary variables with weighted connections

Why it is usually very hard to learn belief nets one layer at a time To learn W, we need the posterior distribution in the first hidden layer. Problem 1: The posterior is typically intractable because of “explaining away”. Problem 2: The posterior depends on the prior as well as the likelihood. So to learn W, we need to know the weights in higher layers, even if we are only approximating the posterior. All the weights interact. Problem 3: We need to integrate over all possible configurations of the higher variables to get the prior for first hidden layer. data hidden variables W prior likelihood

Energy-Based Models Deep Belief nets are composed of Restricted Boltzmann machines which are energy based models Energy based models define probability distribution through an energy function: Data log likelihood gradient “f” is the expert

Boltzmann machines One type of Generative Neural network that connect binary stochastic neurons using symmetric connections. b and c are bias of x and h, W,U,V are weights

Restricted Boltzmann machines (RBM) hidden i j visible We restrict the connectivity to make learning easier. Only one layer of hidden units. We will deal with more layers later No connections between hidden units. In an RBM, the hidden units are conditionally independent given the visible states. So we can quickly get an unbiased sample from the posterior distribution when given a data-vector. This is a big advantage over directed belief nets Approximation of the log-likelihood gradient: Contrastive Divergence weight between units i and j Energy with configuration v on the visible units and h on the hidden units binary state of visible unit i binary state of hidden unit j

Deep Belief Networks Stacking RBMs to from Deep architecture DBN with l layers of models the joint distribution between observed vector x and l hidden layers h. Learning DBN: fast greedy learning algorithm for constructing multi-layer directed networks on layer at a time v h1 h2 h3

Inference in Directed Belief Networks: Why Hard? Explaining Away Posterior over Hidden Vars. <-> intractable Variational Methods approximate the true posterior and improve a lower bound on the log probability of the training data this works, but there is a better alternative: Eliminating Explaining Away in Logistic (Sigmoid) Belief Nets Posterior(non-indep) = prior(indep.) * likelihood (non-indep.) Eliminate Explaining Away by Complementary Priors Add extra hidden layers to create CP that has opposite correlations with the likelihood term, so (when likelihood is multiplied by the prior), post. will become factorial

An infinite sigmoid belief net equivalent to an RBM h1 v0 h0 v2 h2 etc. The distribution generated by this infinite directed net with replicated weights is the equilibrium distribution for a compatible pair of conditional distributions: p(v|h) and p(h|v) that are both defined by W A top-down pass of the directed net = letting a Restricted Boltzmann Machine settle to equilibrium. So this infinite directed net defines the same distribution as an RBM.

Inference in a directed net with replicated weights The variables in h0 are conditionally independent given v0. Inference is trivial. We just multiply v0 by W transpose (gives product of the likelihood term and the prior term). The model above h0 implements a complementary prior. Unlike other directed nets, we can sample from the true posterior dist over all of the hidden layers. Start from visible units, use W^T to infer factorial dist over each hidden unit Computing exact posterior dist in a layer of the infinite logistic belief net = each step of Gibbs sampling in RBM The Maximum Likelihood learning rule for the infinite logistic belief net with tied weights is the same with the learning rule of RBM Contrastive Divergence can be used instead of Maximum likelihood learning which is expensive RBM creates good generative models that can be fine-tuned v1 h1 v0 h0 v2 h2 etc. +

Deep Belief Networks (DBN) Joint distribution: Where

A Greedy Training Algorithm Learn W0 assuming all the weight matrices are tied. Freeze W0 and use W0T to infer factorial approximate posterior distributions over the states of the variable in the first hidden layer. Keeping all the higher weight matrices tied to each other, but untied from W0, learn an RBM model of the higher-level “data” that was produced by using W0T to transform the original data.

Learning a deep directed network etc. h2 First learn with all the weights tied This is exactly equivalent to learning an RBM Contrastive divergence learning is equivalent to ignoring the small derivatives contributed by the tied weights between deeper layers. v2 h1 v1 h0 h0 v0 v0

Then freeze the first layer of weights in both directions and learn the remaining weights (still tied together). This is equivalent to learning another RBM, using the aggregated posterior distribution of h0 as the data. etc. h2 v2 h1 v1 v1 h0 h0 v0

What happens when the weights in higher layers become different from the weights in the first layer? The higher layers no longer implement a complementary prior. So performing inference using the frozen weights in the first layer is no longer correct. Using this incorrect inference procedure gives a variational lower bound on the log probability of the data. We lose by the slackness of the bound. The higher layers learn a prior that is closer to the aggregated posterior distribution of the first hidden layer. This improves the network’s model of the data. Hinton, Osindero and Teh (2006) prove that this improvement is always bigger than the loss.

Fine-tuning with a contrastive divergence version of the “wake-sleep” algorithm After learning many layers of features, we can fine-tune the features to improve generation. 1. Do a stochastic bottom-up pass Adjust the top-down weights to be good at reconstructing the feature activities in the layer below. 2. Do a few iterations of sampling in the top level RBM Use CD learning to improve the RBM 3. Do a stochastic top-down pass Adjust the bottom-up weights to be good at reconstructing the feature activities in the layer above.

A neural model of digit recognition 2000 top-level neurons When training the top layer of weights, the labels were provided as part of the input 10 label neurons 500 neurons The labels were represented by turning on one unit in a ‘softmax’ group of 10 units: 500 neurons 28 x 28 pixel image

The result on MNIST Generative model based on RBM’s 1.25% Support Vector Machine (Decoste et. al.) 1.4% Backprop with 1000 hiddens (Platt) ~1.6% Backprop with 500 -->300 hiddens ~1.6% K-Nearest Neighbor ~ 3.3% Training images: 60,000 Testing images: 10,000 The total training time: a week!

Looking into the ‘mind’ of the machine Samples generated by letting the associative memory run with one label clamped.

Looking into the ‘mind’ of the machine Providing a random binary image as input

Reducing the Dimensionality of Data They always looked like a really nice way to do non-linear dimensionality reduction: But it is very difficult to optimize deep autoencoders using backpropagation. We now have a much better way to optimize them: First train a stack of 4 RBM’s Then “unroll” them. Then fine-tune with backpropagation 1000 neurons 500 neurons 250 neurons 30 28x28

Learning Steps

Autoencoder vs. PCA

Autoencoder vs. LSA

Conclusion Restricted Boltzmann Machines provide a simple way to learn a layer of features without any supervision. Many layers of representation can be learned by treating the hidden states of one RBM as the visible data for training the next RBM This creates good generative models that can then be fine-tuned.

References G. Hinton, S. Osindero, Y. The, A fast learning algorithm for deep belief nets, Neural Computations, 2006. G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006. Y. Bengio, Learning deep architectures for AI, 2007. M. Carreira-Perpinan, G. Hinton, On constrative divergence learning, AISTATS, 2005.

Thank you very much! And any questions?