S UPPORT V ECTOR M ACHINES Jianping Fan Dept of Computer Science UNC-Charlotte.

Slides:



Advertisements
Similar presentations
Support Vector Machine & Its Applications
Advertisements

Introduction to Support Vector Machines (SVM)
Support Vector Machine
Support Vector Machines
Lecture 9 Support Vector Machines
ECG Signal processing (2)
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
PrasadL18SVM1 Support Vector Machines Adapted from Lectures by Raymond Mooney (UT Austin)
Support Vector Machine & Its Applications Abhishek Sharma Dept. of EEE BIT Mesra Aug 16, 2010 Course: Neural Network Professor: Dr. B.M. Karan Semester.
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
SVM - Support Vector Machines A new classification method for both linear and nonlinear data It uses a nonlinear mapping to transform the original training.
An Introduction of Support Vector Machine
Classification / Regression Support Vector Machines

An Introduction of Support Vector Machine
Support Vector Machines
1 Machine Learning Support Vector Machines. 2 Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes.
Support Vector Machines
Support Vector Machines and Kernel Methods
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Support Vector Machines (SVMs) Chapter 5 (Duda et al.)
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class.
Support Vector Classification (Linearly Separable Case, Primal) The hyperplanethat solves the minimization problem: realizes the maximal margin hyperplane.
Classification Problem 2-Category Linearly Separable Case A- A+ Malignant Benign.
Support Vector Machines
Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, a Machine Learning.
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
Support Vector Machine & Image Classification Applications
计算机学院 计算感知 Support Vector Machines. 2 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Perceptron Revisited: Linear Separators Binary classification.
Machine Learning Using Support Vector Machines (Paper Review) Presented to: Prof. Dr. Mohamed Batouche Prepared By: Asma B. Al-Saleh Amani A. Al-Ajlan.
SVM Support Vector Machines Presented by: Anas Assiri Supervisor Prof. Dr. Mohamed Batouche.
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
Classifiers Given a feature representation for images, how do we learn a model for distinguishing features from different classes? Zebra Non-zebra Decision.
An Introduction to Support Vector Machines (M. Law)
Kernels Usman Roshan CS 675 Machine Learning. Feature space representation Consider two classes shown below Data cannot be separated by a hyperplane.
Machine Learning Weak 4 Lecture 2. Hand in Data It is online Only around 6000 images!!! Deadline is one week. Next Thursday lecture will be only one hour.
CS 478 – Tools for Machine Learning and Data Mining SVM.
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
SVM – Support Vector Machines Presented By: Bella Specktor.
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Support Vector Machines Podpůrné vektorové stroje Babak Mahdian, June 2009.
Support vector machine LING 572 Fei Xia Week 8: 2/23/2010 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A 1.
Support Vector Machines Tao Department of computer science University of Illinois.
Support Vector Machines. Notation Assume a binary classification problem. –Instances are represented by vector x   n. –Training examples: x = (x 1,
Text Classification using Support Vector Machine Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata.
6.S093 Visual Recognition through Machine Learning Competition Image by kirkh.deviantart.com Joseph Lim and Aditya Khosla Acknowledgment: Many slides from.
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
Support Vector Machine: An Introduction. (C) by Yu Hen Hu 2 Linear Hyper-plane Classifier For x in the side of o : w T x + b  0; d = +1; For.
An Introduction of Support Vector Machine In part from of Jinwei Gu.
Support Vector Machines Reading: Textbook, Chapter 5 Ben-Hur and Weston, A User’s Guide to Support Vector Machines (linked from class web page)
Support Vector Machine Slides from Andrew Moore and Mingyue Tan.
Support Vector Machine
Support vector machines
Support Vector Machines
Support Vector Machines
Kernels Usman Roshan.
Support Vector Machines
Support Vector Machines Introduction to Data Mining, 2nd Edition by
Statistical Learning Dong Liu Dept. EEIS, USTC.
Support Vector Machines Most of the slides were taken from:
Support Vector Machines
Usman Roshan CS 675 Machine Learning
Support vector machines
Support Vector Machine
Support vector machines
SVMs for Document Ranking
Support Vector Machines Kernels
Presentation transcript:

S UPPORT V ECTOR M ACHINES Jianping Fan Dept of Computer Science UNC-Charlotte

P ERCEPTRON R EVISITED : L INEAR S EPARATORS Binary classification can be viewed as the task of separating classes in feature space: w T x + b = 0 w T x + b < 0 w T x + b > 0 f(x) = sign(w T x + b)

L INEAR S EPARATORS Which of the linear separators is optimal?

C LASSIFICATION M ARGIN Distance from example x i to the separator is Examples closest to the hyperplane are support vectors. Margin ρ of the separator is the distance between support vectors. r ρ

M AXIMUM M ARGIN C LASSIFICATION Maximizing the margin is good according to intuition and PAC ( Probably approximately correct learning ) theory. Probably approximately correct learning Implies that only support vectors matter; other training examples are ignorable.

L INEAR SVM M ATHEMATICALLY Let training set {( x i, y i )} i =1.. n, x i  R d, y i  {-1, 1} be separated by a hyperplane with margin ρ. Then for each training example ( x i, y i ): For every support vector x s the above inequality is an equality. After rescaling w and b by ρ/ 2 in the equality, we obtain that distance between each x s and the hyperplane is Then the margin can be expressed through (rescaled) w and b as: w T x i + b ≤ - ρ/2 if y i = -1 w T x i + b ≥ ρ/2 if y i = 1 y i (w T x i + b) ≥ ρ/2 

L INEAR SVM S M ATHEMATICALLY ( CONT.) Then we can formulate the quadratic optimization problem: Which can be reformulated as: Find w and b such that is maximized and for all (x i, y i ), i=1..n : y i (w T x i + b) ≥ 1 Find w and b such that Φ(w) = ||w|| 2 =w T w is minimized and for all (x i, y i ), i=1..n : y i (w T x i + b) ≥ 1

S OLVING THE O PTIMIZATION P ROBLEM Need to optimize a quadratic function subject to linear constraints. Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist. Find w and b such that Φ(w) =w T w is minimized and for all (x i, y i ), i=1..n : y i (w T x i + b) ≥ 1

S OLVING THE O PTIMIZATION P ROBLEM The solution involves constructing a dual problem where a Lagrange multiplier α i is associated with every inequality constraint in the primal (original) problem: Find α 1 …α n such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) α i ≥ 0 for all α i

T HE O PTIMIZATION P ROBLEM S OLUTION Given a solution α 1 …α n to the dual problem, solution to the primal is: Each non-zero α i indicates that corresponding x i is a support vector. Then the classifying function is (note that we don’t need w explicitly): Notice that it relies on an inner product between the test point x and the support vectors x i – we will return to this later. Also keep in mind that solving the optimization problem involved computing the inner products x i T x j between all training points. w = Σ α i y i x i b = y k - Σ α i y i x i T x k for any α k > 0 f(x) = Σ α i y i x i T x + b

S OFT M ARGIN C LASSIFICATION What if the training set is not linearly separable? Slack variables ξ i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft. ξiξi ξiξi

S OFT M ARGIN C LASSIFICATION M ATHEMATICALLY The old formulation: Modified formulation incorporates slack variables: Parameter C can be viewed as a way to control overfitting: it “trades off” the relative importance of maximizing the margin and fitting the training data. Find w and b such that Φ(w) =w T w is minimized and for all (x i,y i ), i=1..n : y i (w T x i + b) ≥ 1 Find w and b such that Φ(w) =w T w + C Σ ξ i is minimized and for all (x i,y i ), i=1..n : y i (w T x i + b) ≥ 1 – ξ i,, ξ i ≥ 0

S OFT M ARGIN C LASSIFICATION – S OLUTION Dual problem is identical to separable case (would not be identical if the 2-norm penalty for slack variables C Σ ξ i 2 was used in primal objective, we would need additional Lagrange multipliers for slack variables): Again, x i with non-zero α i will be support vectors. Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) 0 ≤ α i ≤ C for all α i

S OFT M ARGIN C LASSIFICATION – S OLUTION Solution to the dual problem is: w = Σ α i y i x i b= y k (1- ξ k ) - Σ α i y i x i T x k for any k s.t. α k >0 f(x) = Σ α i y i x i T x + b Again, we don’t need to compute w explicitly for classification:

T HEORETICAL J USTIFICATION FOR M AXIMUM M ARGINS Vapnik has proved the following: The class of optimal linear separators has VC dimension h bounded from above as where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m 0 is the dimensionality. Intuitively, this implies that regardless of dimensionality m 0 we can minimize the VC dimension by maximizing the margin ρ. Thus, complexity of the classifier is kept small regardless of dimensionality.

L INEAR SVM S : O VERVIEW The classifier is a separating hyperplane. Most “important” training points are support vectors; they define the hyperplane. Quadratic optimization algorithms can identify which training points x i are support vectors with non-zero Lagrangian multipliers α i.

L INEAR SVM S : O VERVIEW Both in the dual formulation of the problem and in the solution training points appear only inside inner products: Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) 0 ≤ α i ≤ C for all α i f(x) = Σ α i y i x i T x + b

N ON - LINEAR SVM S Datasets that are linearly separable with some noise work out great: But what are we going to do if the dataset is just too hard? How about… mapping data to a higher-dimensional space : x2x2 x x x

N ON - LINEAR SVM S : F EATURE SPACES General idea : the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable: Φ: x → φ(x)

T HE “K ERNEL T RICK ” The linear classifier relies on inner product between vectors K ( x i, x j )= x i T x j If every datapoint is mapped into high-dimensional space via some transformation Φ: x → φ( x ), the inner product becomes: K ( x i, x j )= φ ( x i ) T φ ( x j ) A kernel function is a function that is eqiuvalent to an inner product in some feature space. Example: 2-dimensional vectors x =[ x 1 x 2 ]; let K ( x i, x j )=(1 + x i T x j ) 2, Need to show that K ( x i, x j )= φ ( x i ) T φ ( x j ): K ( x i, x j )=(1 + x i T x j ) 2, = 1+ x i1 2 x j x i1 x j1 x i2 x j2 + x i2 2 x j x i1 x j1 + 2 x i2 x j2 = = [1 x i1 2 √ 2 x i1 x i2 x i2 2 √ 2 x i1 √ 2 x i2 ] T [1 x j1 2 √ 2 x j1 x j2 x j2 2 √ 2 x j1 √ 2 x j2 ] = = φ ( x i ) T φ ( x j ), where φ ( x ) = [1 x 1 2 √ 2 x 1 x 2 x 2 2 √ 2 x 1 √ 2 x 2 ] Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to compute each φ ( x ) explicitly).

W HAT F UNCTIONS ARE K ERNELS ? For some functions K ( x i, x j ) checking that K ( x i, x j )= φ( x i ) T φ( x j ) can be cumbersome. Mercer’s theorem: Every semi-positive definite symmetric function is a kernel Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix: K(x1,x1)K(x1,x1)K(x1,x2)K(x1,x2)K(x1,x3)K(x1,x3)…K(x1,xn)K(x1,xn) K(x2,x1)K(x2,x1)K(x2,x2)K(x2,x2)K(x2,x3)K(x2,x3)K(x2,xn)K(x2,xn) …………… K(xn,x1)K(xn,x1)K(xn,x2)K(xn,x2)K(xn,x3)K(xn,x3)…K(xn,xn)K(xn,xn) K=

E XAMPLES OF K ERNEL F UNCTIONS Linear: K ( x i, x j )= x i T x j Mapping Φ: x → φ ( x ), where φ ( x ) is x itself Polynomial of power p : K ( x i, x j )= (1+ x i T x j ) p Mapping Φ: x → φ ( x ), where φ ( x ) has dimensions Gaussian (radial-basis function): K ( x i, x j ) = Mapping Φ: x → φ ( x ), where φ ( x ) is infinite-dimensional : every point is mapped to a function (a Gaussian); combination of functions for support vectors is the separator. Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto ), but linear separators in it correspond to non-linear separators in original space.

N ON - LINEAR SVM S M ATHEMATICALLY Dual problem formulation: The solution is: Optimization techniques for finding α i ’ s remain the same! Find α 1 …α n such that Q(α) = Σ α i - ½ ΣΣ α i α j y i y j K(x i, x j ) is maximized and (1) Σ α i y i = 0 (2) α i ≥ 0 for all α i f(x) = Σ α i y i K(x i, x j )+ b

SVM APPLICATIONS SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s. SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data. SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data. SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. ’97], principal component analysis [Schölkopf et al. ’99], etc. Most popular optimization algorithms for SVMs use decomposition to hill-climb over a subset of α i ’ s at a time, e.g. SMO [Platt ’99] and [Joachims ’99] Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

S OURCE C ODE FOR SVM 1. SVM Light from Cornell University: Prof. Thorsten JoachimsThorsten Joachims 2. Multi-Class SVM from Cornell: Prof. Thorsten JoachimsThorsten Joachims 3. LIBSVM from Taiwan University: Prof. Chih-Jen LinChih-Jen Lin