Introduction to Plasma-Surface Interactions Lecture 6 Divertors.

Slides:



Advertisements
Similar presentations
Lecture 15: Capillary motion
Advertisements

Louisiana Tech University Ruston, LA Slide 1 Energy Balance Steven A. Jones BIEN 501 Wednesday, April 18, 2008.
Chapter 2 Introduction to Heat Transfer
Lesson 17 HEAT GENERATION
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Conference on Computational Physics 30 August 2006 Transport Simulation for the Scrape-Off Layer and Divertor Plasmas in KSTAR Tokamak S. S. Kim and S.
First Wall Heat Loads Mike Ulrickson November 15, 2014.
Basic Governing Differential Equations
ELEN 3371 Electromagnetics Fall Lecture 6: Maxwell’s Equations Instructor: Dr. Gleb V. Tcheslavski Contact: Office.
SUGGESTED DIII-D RESEARCH FOCUS ON PEDESTAL/BOUNDARY PHYSICS Bill Stacey Georgia Tech Presented at DIII-D Planning Meeting
Physics of fusion power
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
Physics of fusion power Lecture 8 : The tokamak continued.
Physics of Fusion power Lecture 7: Stellarator / Tokamak.
LINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS
5. Simplified Transport Equations We want to derive two fundamental transport properties, diffusion and viscosity. Unable to handle the 13-moment system.
Physics of fusion power Lecture 2: Lawson criterion / some plasma physics.
Physics of fusion power Lecture 2: Lawson criterion / Approaches to fusion.
Physics of Fusion power Lecture4 : Quasi-neutrality Force on the plasma.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
Chapter 5 Diffusion and resistivity
Molecular Transport Equations. Outline 1.Molecular Transport Equations 2.Viscosity of Fluids 3.Fluid Flow.
ENE 311 Lecture 2. Diffusion Process The drift current is the transport of carriers when an electric field is applied. There is another important carrier.
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
Boundaries, shocks, and discontinuities. How discontinuities form Often due to “wave steepening” Example in ordinary fluid: –V s 2 = dP/d  m –P/  
Physics of fusion power Lecture 10: tokamak – continued.
Chapter 3 Part 1 One-Dimensional, Steady-State Conduction.
第16回 若手科学者によるプラズマ研究会 JAEA
Tritium burnup fraction C. Kessel, PPPL ARIES Project meeting, July 27-28, 2011 Gaithersburg, MD.
Mass Transfer Coefficient
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
One-Dimensional Steady-State Conduction
CHAPTER 3 EXACT ONE-DIMENSIONAL SOLUTIONS 3.1 Introduction  Temperature solution depends on velocity  Velocity is governed by non-linear Navier-Stokes.
Optimization Of a Viscous Flow Between Parallel Plates Based On The Minimization Of Entropy Generation Presentation By Saeed Ghasemi.
Physics of fusion power Lecture 9 : The tokamak continued.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
Edge-SOL Plasma Transport Simulation for the KSTAR
Radial Electric Field Formation by Charge Exchange Reaction at Boundary of Fusion Device* K.C. Lee U.C. Davis *submitted to Physics of Plasmas.
FREE CONVECTION 7.1 Introduction Solar collectors Pipes Ducts Electronic packages Walls and windows 7.2 Features and Parameters of Free Convection (1)
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
Role of thermal instabilities and anomalous transport in the density limit M.Z.Tokar, F.A.Kelly, Y.Liang, X.Loozen Institut für Plasmaphysik, Forschungszentrum.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills and M. D. Hageman G. W. Woodruff School of Mechanical Engineering Correlations for Divertor Thermal-Hydraulic.
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Flow of Compressible Fluids. Definition A compressible flow is a flow in which the fluid density ρ varies significantly within the flowfield. Therefore,
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 7 External flow.
CONVECTION : An Activity at Solid Boundary P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Identify and Compute Gradients.
2014/03/06 那珂核融合研究所 第 17 回若手科学者によるプラズマ研究会 SOL-divertor plasma simulations with virtual divertor model Satoshi Togo, Tomonori Takizuka a, Makoto Nakamura.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
AFE BABALOLA UNIVERSITY
Lecture 6: Maxwell’s Equations
One-Dimensional Steady-State Conduction
Mechanisms for losses during Edge Localised modes (ELMs)
INTRODUCTION : Convection: Heat transfer between a solid surface and a moving fluid is governed by the Newton’s cooling law: q = hA(Ts-Tɷ), where Ts is.
Physics of fusion power
Maxwell’s Equations.
Features of Divertor Plasmas in W7-AS
Finite difference code for 3D edge modelling
UNIT - 4 HEAT TRANSFER.
Physics of fusion power
Heat Transfer Coefficient
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
What is Fin? Fin is an extended surface, added onto a surface of a structure to enhance the rate of heat transfer from the structure. Example: The fins.
Steady-State Heat Transfer (Initial notes are designed by Dr
Mikhail Z. Tokar and Mikhail Koltunov
Presentation transcript:

Introduction to Plasma-Surface Interactions Lecture 6 Divertors

Divertor functions 1. Removes plasma surface interactions from the confined plasma: hence reduces the impurity flux back into the plasma 2. Removes deposited power to a region where it is easier to remove using a heat transfer fluid 3. Reduces the flux of fast CX neutrals to the main chamber walls by reducing the flux of neutrals which can reach the main plasma 4. Impurities ionized in the SOL will flow into the divertor 5. Pumps helium. The divertor maintains a higher neutral pressure than the SOL and therefore it is easier to pump the helium out. (Important in DT burning devices)

Potted history of divertors A form of divertor was part of the early stellerators designed by Spitzer in the 1950’s Much later, divertors were designed for tokamaks, DIVA (1974), DITE (1976), T12, PDX and ASDEX Early divertors used a separate chamber but in D- III it was discovered that they worked well with the target in the same chamber ASDEX discovered the H-mode during divertor operation

Typical poloidal divertor Poloidal cross-section of tokamak with typical field lines. The poloidal fields are used to produce a null which causes the field lines to diverge and flow out into a separate chamber remote from the confined plasma The null is known as the X-point

Simple analytical modelling of the divertor Consider only region between X-point and the target Energy flow comes across the LCFS from the confined plasma Assume a 1-dimensional model no energy or momentum sinks in SOL specifically, no radiation

Geometry of the 1-D 2-point fluid model Poloidal cross-section Geometry along the field line Upstream density and temp n u and T u are assumed to be at the X- point. Downstream density and temp n t and T t are at the target

Modelling the divertor - 1 Model using the following assumptions Momentum conservation along the field line requires constant Heat transfer along field line is by conduction where Heat transmitted across the sheath is given by Where is the sheath transmission factor and c s is the ion sound speed Taking q II to be known we can solve the 3 equations for T t. T u and n t in terms of n u

Modelling the divertor - 2 The solutions are messy but when we have a sufficiently high temperature gradient so that T u 7/2 >> T t 7/2 then we can obtain the simple forms m -3 And keV Note the n u 3 and n u -2 dependence of target density and temperature respectively

Target temperature and density vs upstream density q II =1000MW m - 2 L=50m A=2 Note the n u 3 dependence of n t And the n u -2 dependence of T t At low n u target density n t is linear with n u Calculated with the simple analytical 1-D model described

High density limit When T u 7/2 >> T t 7/2 the ratio of the upstream to down stream temperatures can be calculated From which it can be noted that a large temperature gradient requires low power, a long connection length or a high density

Effect of recycling at the target Assumed plasma source function due to recycling T i = T e nene Mach number Plasma due to recycling enhances the flow back to the target At high densities when flow across the separatrix is small this is the dominant source Ionization and density peak near the target plate and T falls Flow accelerates near the target due to the source

Radial power distribution in the SOL Divergence of heat flux must be zero Where qs are heat flux vectors. From this an expression for the parallel heat flux at the target and the power scrape off thickness can be derived For q II =0.5 MWm -2, L=150m,  =1 m 2 s -1 and n u =1x10 m -3 we obtain p =0.01 m and q II =7 GW m -2

Dispersal of divertor power The SOL is very thin, determined by the relative rates of parallel and cross field transport Upstream widths are  p ~3 mm in present devices, C-Mod, AUG, JET - estimated to be  p ~ 100mm in ITER  leading to q u ~ 2000 MW/m 2 Divertor plates have a limit of ~ 10 MW /m 2 requiring a factor of 200 reduction Methods of reducing power flux 1.Mid-plane pitch angle (~x7) 2.Flux surface expansion (~x3) 3.Tilted divertor plate (~x3) 4.Divertor/SOL radiation requires a further factor of 3

Volume losses of power in the divertor by impurity radiation, simple calculation Impurity radiation can be written Where n m is the impurity concentration an R(T e ) is the radiation parameter which depends on species. Maximum values of R are ~10 31 Wm 3 Considering average values, to radiate 1GW requires n m n e V> m -3 For V= 10 3 m 3 and n e =~10 20 m -3, the impurity fraction n m/ /n e ~10%

Power loss mechanisms Radiation: Such high concentrations could lead to impurities flowing back into the confined plasma. It may also cause an unacceptable sputter rate of the target Charge exchange: The ratio of charge exchange to ionization rate coefficients indicate that the temperature must be already low (<10 eV) to obtain a significant energy loss by charge exchange The answer appears to be to have radiating mantle in the main plasma. Up to 70% of the plasma power has been radiated in experimental tokamaks but it is still uncertain whether this much power can be radiated in ITER

Removal of helium ash Pressure is very low at the boundary of the plasma and would require an enormous pumping speed to remove it The gas pressure in the divertor has to be optimized by operating at high density and improving the baffle geometry He pressure tends to be proportional to H pressure, experimentally the enrichment factor  is Experimentally the effect of baffles tends to be small (<2 in JET and C-Mod )

2D effects: schematic of particle flow in the divertor While the region near the separatrix tends to be at high density and in the recycle mode, further out it is low density with low tempoerature and little recycle

General design considerations Tile geometry needs to be very carefully controlled. Because of the very high parallel power density any surface not at grazing incidence will suffer serious damage. Flat plate geometry has the advantage of simplicity, good diagnostic access and a simple rigid structure can be used Because of the high powers there is significant thermal expansion and non-uniform heating To minimize stress in the tiles they are normally small ~20-30 mm The angle of the tiles wrt field lines has to be as small as possible to increase the effective area At very low angles the tile edge can become exposed. This is overcome displacing each tile wrt its neighbour

Example of target tile geometry With this geometry, in order to prevent tile edges being exposed, the tile accuracy has to be high (~0.1 mm)

Divertor analysis Divertors are very complicated and still not fully understood Although these 1-D analytical models are helpful in understanding the important parameters it is necessary to use 2-D codes These have analytical sections for the plasma fluid and Monte Carlo codes for the neutrals. The two parts have to be coupled which is complex. Examples of these B2-Eirene Braams and Reiter (Julich)and EDGE2D-Nimbus (JET)