Area scaling from entanglement in flat space quantum field theory Introduction Area scaling of quantum fluctuations Unruh radiation and Holography.

Slides:



Advertisements
Similar presentations
F. Debbasch (LERMA-ERGA Université Paris 6) and M. Bustamante, C. Chevalier, Y. Ollivier Statistical Physics and relativistic gravity ( )
Advertisements

ICHEP conference, Paris, 22/07/10. Emergence Current Paradigm FUNDAMENTAL FORCES: carried by elementary particles.
Selected Topics in AdS/CFT lecture 1
Wald’s Entropy, Area & Entanglement Introduction: –Wald’s Entropy –Entanglement entropy in space-time Wald’s entropy is (sometimes) an area ( of some metric)
Thanks to the organizers for bringing us together!
On the role of gravity in Holography Current work: A Minkowski observer restricted to part of space will observe: Radiation. Area scaling of thermodynamic.
Introduction to Black Hole Thermodynamics Satoshi Iso (KEK)
 Entanglement & area thermodynamics of Rindler space  Entanglement & area  Entanglement & dimensional reduction (holography) Entanglement, thermodynamics.
Sudden death of entanglement, teleportation fidelity loss and the Unruh effect Andre G.S. LandulfoAndre G.S. Landulfo and George E.A. Matsas George E.A.
On black hole microstates Introduction BH entropy Entanglement entropy BH microstates Amos Yarom. Ram Brustein. Martin Einhorn.
Unruh effect and Holography
Gerard ’t Hooft Spinoza Institute Utrecht University CMI, Chennai, 20 November 2009 arXiv:
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
A global picture of quantum de Sitter space Donald Marolf May 24, 2007 Based on work w/Steve Giddings.
Holographic Dark Energy Preety Sidhu 5 May Black Holes and Entropy Black holes are “maximal entropy objects” Entropy of a black hole proportional.
Mohamed Anber HEP Bag Lunch April 1st With Lorenzo Sorbo
Quantum Entanglement and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research and Dubna University “Gravity in three dimensions”, ESI Workshop,
AdS4/CFT3+gravity for Accelerating Conical Singularities arXiv: arXiv: Mohamed Anber HET Bag Lunch Novemberr 12th.
Towards a superstatistical SU2 Yang-Mills eos Tamás S. Bíró (KFKI RMKI Budapest / BME) and Zsolt Schram (DTP University of Debrecen) 1. Superstatistics:
AdS/CFT Correspondence and Some Applications An amateur’s point of view Hai-cang Ren ( Rockefeller & CCNU )
几个有趣的黑洞解 蔡 荣 根 中国科学院理论物理研究所 (中科大交叉中心, ).
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
Entropy bounds Introduction Black hole entropy Entropy bounds Holography.
Entropy localization and distribution in the Hawking radiation Horacio Casini CONICET-Intituto Balseiro – Centro Atómico Bariloche.
Lamb shift in Schwarzschild spacetime Wenting Zhou & Hongwei Yu Department of Physics, Hunan Normal University, Changsha, Hunan, China.
Quantum Gravity and Quantum Entanglement (lecture 1) Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Talk is based on hep-th/
Louisville March 22, 2006 Andrew Chamblin Memorial An AdS Thermal Properties of Strongly Coupled Gauge Theories with Fundamental Matter from Gauge/Gravity.
Entanglement interpretation of black hole entropy in string theory Amos Yarom. Ram Brustein. Martin Einhorn.
Einstein Field Equations and First Law of Thermodynamics Rong-Gen Cai (蔡荣根) Institute of Theoretical Physics Chinese Academy of Sciences.
Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences Holography and Black Hole Physics TexPoint fonts used in EMF: AA.
Shear viscosity of a highly excited string and black hole membrane paradigm Yuya Sasai Helsinki Institute of Physics and Department of Physics University.
Horizon in Hawking radiation and in Random Matrix Theory Vladimir Kravtsov Abdus Salam ICTP,Trieste, Italy Collaboration: Fabio Franchini, ICTP July 6,
CLOWN S & BLACK HOLES Ram Brustein, Merav Hadad Phys. Lett. B718 (2012) / The canonical conjugate to black hole entropy in general theories.
AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/ [Phys.Rev.Lett.96(2006)181602] hep-th/ [JHEP.
Thermalization of isolated quantum systems (+ comments on black holes) M. Kruczenski Purdue University Aspen 2014 Based on arXiv: arXiv:
Spacetime Thermodynamics from Geometric Point of View Yu Tian (田雨) Department of Physics, Beijing Institute of Technology.
1 Black-Hole Thermodynamics PHYS 4315 R. S. Rubins, Fall 2009.
On the Black Hole/Black Ring Transition Ernesto Lozano-Tellechea Weizmann Institute of Science Israel ICHEP-04 Beijing Based on colaboration with: Giovanni.
Quantum Black Holes, Strong Fields, and Relativistic Heavy Ions D. Kharzeev “Understanding confinement”, May 16-21, 2005.
Non-Extensive Black Hole Thermodynamics estimate for Power-Law Particle Spectra Power-law tailed spectra and their explanations Abstract thermodynamics.
Comments on entanglement entropy in the dS/CFT correspondence Yoshiki Sato ( Kyoto U. ) PRD 91 (2015) 8, [arXiv: ] 9th July.
Application of AdS/CFT Correspondence to Studies on Non-equilibrium Steady States Shin Nakamura (Chuo University and ISSP, U. Tokyo) Refs. S. N. and H.
Black Holes and the Fluctuation Theorem Susumu Okazawa ( 総研大, KEK) with Satoshi Iso and Sen Zhang, arXiv: work in progress.
Entanglement in Quantum Gravity and Space-Time Topology
Chapter 6: Basic Methods & Results of Statistical Mechanics
1 Bhupendra Nath Tiwari IIT Kanpur in collaboration with T. Sarkar & G. Sengupta. Thermodynamic Geometry and BTZ black holes This talk is mainly based.
The effect of Gravity on Equation of State Hyeong-Chan Kim (KNUT) FRP Workshop on String Theory and Cosmology 2015, Chungju, Korea, Nov ,
Quantum mechanics and the geometry of spacetime Juan Maldacena PPCM Conference May 2014.
Based on Phys. Rev. D 92, (R) (2015) 中科大交叉学科理论研究中心
Gravity field equations can be derived from the thermodynamic relation for any metric theory of gravity Merav Hadad Ram Brustein, M.H
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
New Insights into Quantum Gravity from Holography Gary Horowitz UC Santa Barbara with N. Engelhardt ( , and in progress)
Gravity on Matter Equation of State and the Unruh temperature Hyeong-Chan Kim (KNUT) 2016 FRP workshop on String theory and cosmology Seoul, Korea, June.
Ch 2. THERMODYNAMICS, STATISTICAL MECHANICS, AND METROPOLIS ALGORITHMS 2.6 ~ 2.8 Adaptive Cooperative Systems, Martin Beckerman, Summarized by J.-W.
Equation of State and Unruh temperature
Ewha Womans University, Seoul, Korea
Hawking-Unruh Hadronization and Strangeness Production in
Thermodynamic Volume in AdS/CFT
Gravity from quantum entanglement Jae-Weon Lee (Jungwon univ.)
Throat quantization of the Schwarzschild-Tangherlini(-AdS) black hole
Black Hole Entropy Black holes – a review Black holes in string theory
Solutions of black hole interior, information paradox and the shape of singularities Haolin Lu.
Why concave rather than convex
Hawking-Unruh Temperature
Model systems with interaction
Energy Fluctuations in the Canonical Ensemble
Thermodynamics and Statistical Mechanics
Pavel Buividovich (Regensburg, Germany)
Geometric phase and the Unruh effect
Park Gunsu An Daehyun Kim Haram
Presentation transcript:

Area scaling from entanglement in flat space quantum field theory Introduction Area scaling of quantum fluctuations Unruh radiation and Holography

Black hole thermodynamics J. Beckenstein (1973) S. Hawking (1975) S  A THTH S = ¼ A

An ‘artificial’ horizon. V V in out

Entropy: S in =Tr(  in ln  in ) S in =S out Srednicki (1993)

Entanglement entropy of a sphere out in Entropy R2R2 Srednicki (1993)

Other Thermodynamic quantities Heat capacity: More generally:  A ? ?

A different viewpoint in out = No accessRestricted measurements

Area scaling of fluctuations R. Brustein and A.Y., (2004)  O a V1 O b V2  V1V1 Assumptions: V2V2  O a V1 2 

Area scaling of correlation functions  O a V1 O b V2  =  V1  V2  O a (x) O b (y)  d d x d d y =  V1  V2 F ab (|x-y|) d d x d d y =  D(  ) F ab (  ) d  D(  )=  V  V  (  x  y  ) d d x d d y Geometric term: Operator dependent term =  D(  )  2 g(  ) d  = -  ∂  (D(  )/  d-1 )  d-1 ∂  g(  ) d 

Geometric term D(  )=  V1  V2  (  x  y  ) d d x d d y V1V1 V2V2 =    (  r) d d r d d R  d d R  A  2 )  (  r) d d r   d-1 +O(  d ) D(  )=C 2 A  d + O(  d+1 )

Geometric term D(  )=    (  r) d d r d d R  d d R  V + A  2 )  (  r) d d r   d-1 +O(  d ) D(  )=C 1 V  d-1 ± C 2 A  d + O(  d+1 ) V 1 =V 2

Area scaling of correlation functions  O a V1 O b V2  =  V1  V2  O a (x) O b (y)  d d x d d y =  V1  V2 F ab (|x-y|) d d x d d y =  D(  ) F ab (  ) d  =  D(  )  2 g(  ) d   ∂  (D(  )/  d-1 )   = -  ∂  (D(  )/  d-1 )  d-1 ∂  g(  ) d  UV cuttoff at  ~1/  D(  )=C 1 V  d-1 + C 2 A  d + O(  d+1 )  A

Energy fluctuations

Intermediate summary V V Tr(  in O V ) Tr(  in O V 2 )

Finding  in  (x,0)=  (x) x t  ’(x)  ’’(x) Tr out  (  ’  ’’   in (  ’ in,  ’’ in ) =  in  ’ in  ’’ in    Exp[-S E ] D   (x,0 + ) =  ’ in (x)  (x,0 - ) =  ’’ in (x)  (x,0 + ) =  ’ in (x)  out (x)  (x,0 - ) =  ’’ in (x)  out (x)   Exp[-S E ] D  D  out  ’’ in (x)  ’ in (x)  (x,0 + )=  ’(x)  (x,0 - )=  ’’(x)  (x,0 + )=  ’(x)  (x,0 - )=  ’’(x)

Finding rho x t  ’ in (x)  ’’ in (x)  in  ’ in  ’’ in    Exp[-S E ] D   (x,0 + ) =  ’ in (x)  (x,0 - ) =  ’’ in (x)  ’| e -  K |  ’’  Kabbat & Strassler (1994)

Rindler space (Rindler 1966) ds 2 = -dt 2 +dx 2 +  dx i 2 ds 2 = -a 2  2 d  2 +d  2 +  dx i 2 t=  /a sinh(a  ) x=  /a cosh(a  ) Acceleration = a/  Proper time =  x t  = const  =const H R = K x

Unruh Radiation (Unruh, 1976) x t ds 2 = -a 2  2 d  2 +d  2 +  dx i 2  = 0 a  ≈ a  +i2  Avoid a conical singularity Periodicity of Greens functions Radiation at temperature  0 = 2  /a  R =  e -  H R  =  e -  K  =  in

Schematic picture VEVs in V of Minkowski space VV Observer in Minkowski space with d.o.f restricted to V Canonical ensemble in Rindler space (if V is half of space) Tr(  in O V ) = Tr(  R O V ) =

Other shapes R. Brustein and A.Y., (2003)  in  ’ in  ’’ in    Exp[-S E ] D   (x,0 + ) =  ’ in (x)  (x,0 - ) =  ’’ in (x) x t  ’’ in( x)  ’ in( x)   =  ’ in |e -  H 0 |  ’’ out  d/dt H 0 = 0 S E =  0  H 0 dt  (x,t),  (x,t), +B.C. H 0 =K, in={x|x>0}

Evidence for bulk-boundary correspondence V1V1  O V1 O V2  A 1  A 2 OV1OV2OV1OV2 V2V2 OV1OV2OV1OV2  V1 V2 V1 V2  O V1 O V2  -  O V 1  O V2  Pos. of V 2 R. Brustein D. Oaknin, and A.Y., (2003)

A working example Large N limit R. Brustein and A.Y., (2003)

Summary V Area scaling of Fluctuations due to entanglement Unruh radiation and Area dependent thermodynamics A Boundary theory for fluctuations Statistical ensemble due to restriction of d.o.f V A Minkowski observer restricted to part of space will observe: Radiation. Area scaling of thermodynamic quantities. Bulk boundary correspondence*.

Speculations Theory with horizon (AdS, dS, Schwarzschild) A Boundary theory for fluctuations V Area scaling of Fluctuations due to entanglement Statistical ensemble due to restriction of d.o.f V ??? Israel (1976) Maldacena (2001)

Fin