Ethernet “dominant” LAN technology: cheap $20 for 100Mbs!

Slides:



Advertisements
Similar presentations
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
Advertisements

5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
Computer Networks Ethernet I Professor Hui Zhang
The ALOHA Protocol “Free for all”: whenever station has a frame to send, it does so. –Station listens for maximum RTT for an ACK. –If no ACK after a specified.
1 Ethernet EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement: Some slides taken.
1 Data Link Layer Ethernet Bridges Token Ring. 2 Summary of MAC protocols What do you do with a shared media? Channel Partitioning: time, frequency or.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
5: DataLink Layer5-1 Data Link Layer r What is Data Link Layer? r Multiple access protocols r Ethernet.
TDC 461 Basic Communications Systems Local Area Networks 29 May, 2001.
EE 122: Ethernet and Ion Stoica September 18, 2002 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
5: DataLink Layer – Ethernet, Hubs and Switches.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar1 ECSE-4730: Computer Communication Networks (CCN) Chapter 5: Data Link Layer:
MAC Addresses and ARP 32-bit IP address: –network-layer address –used to get datagram to destination IP subnet MAC (or LAN or physical or Ethernet) address:
5-1 Data Link Layer r Today, we will study the data link layer… r This is the last layer in the network protocol stack we will study in this class…
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
1 Interconnecting LAN segments Repeaters Hubs Bridges Switches.
5: DataLink Layer5a-1 Summary of MAC protocols r What do you do with a shared media? m Channel Partitioning, by time, frequency or code Time Division,Code.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J.
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
1 ECE453 – Introduction to Computer Networks Lecture 8 – Multiple Access Control (II)
DataLink Layer1 Ethernet Technologies: 10Base2 10: 10Mbps; 2: 200 meters (actual is 185m) max distance between any two nodes without repeaters thin coaxial.
Computer Networking Lecture 5 – Ethernet. Lecture 5: MAC Protocols: A Taxonomy Three broad classes: Channel partitioning Divide channel.
1 Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:  SD, ED mark start,
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
ICOM 6115©Manuel Rodriguez-Martinez ICOM 6115 – Computer Networks and the WWW Manuel Rodriguez-Martinez, Ph.D. Lecture 17.
Chapter 13 Wired LANs: Ethernet
Lecture 17 Ethernet r Widely deployed because: m First LAN technology m Simpler and less expensive than token LANs and ATM m Kept up with the speed race:
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.
LAN Technologies MAC protocols used in LANs, to control access to the channel Token Rings: IEEE (IBM token ring), for computer room, or department.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 4: Link Layer addressing Ethernet Computer Networking: A Top Down Approach 6 th edition Jim Kurose,
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
1 Computer Communication & Networks Lecture 13 Datalink Layer: Local Area Network Waleed Ejaz
Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:  SD, ED mark start,
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r multiple access protocols and LANs r link layer addressing, ARP r specific link layer.
Link Layer: MAC Ilam University Dr. Mozafar Bag-Mohammadi.
Data Link Layer Moving Frames. Link Layer Protocols: ethernet, wireless, Token Ring and PPP Has node-to-node job of moving network layer.
5: DataLink Layer 5a-1 18: Ethernet, Hubs, Bridges, Switches Last Modified: 10/27/2015 1:29:46 PM.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Cisco 3 – Switching Concepts Perrine. J Page 16/1/2016 Module 4 The use of bridges and switches for segmentation results in ____? 1.Multiple broadcast.
1 CS4550: Computer Networks II Review Data Link Layer.
17 - Winter 2005 ECE ECE 766 Computer Interfacing and Protocols 1 Local Area Networks Need for high performance communications for physically close devices.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Connecting Devices CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL Department of Electronics and.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r link layer services r error detection, correction r multiple access protocols and LANs.
Link Layer MAC Dr. Mozafar Bag-Mohammadi University of Ilam.
EE 122: Lecture 6 Ion Stoica September 13, 2001 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
1 Ethernet “dominant” LAN technology: cheap $20 for 100Mbs! first widely used LAN technology Simpler, cheaper than token LANs and ATM Kept up with speed.
1 Multiple Access: Ethernet Section Point-to-Point vs. Broadcast Media Point-to-point –PPP for dial-up access –Point-to-point link between Ethernet.
Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
Computer Communication Networks
Link Layer 5.1 Introduction and services
CS4470 Computer Networking Protocols
Hubs Hubs are essentially physical-layer repeaters:
University of Pittsburgh
CS 457 – Lecture 6 Ethernet Spring 2012.
Mac Addressing, Ethernet, and Interconnections
Hubs Hubs are essentially physical-layer repeaters:
Data Link Issues Relates to Lab 2.
Getting Connected (Chapter 2 Part 3)
Protocol layering and data
Dr. Mozafar Bag-Mohammadi University of Ilam
18: Ethernet, Hubs, Bridges, Switches
Protocol layering and data
LAN Addresses and ARP IP address: drives the packet to destination network LAN (or MAC or Physical) address: drives the packet to the destination node’s.
Link Layer 5.1 Introduction and services
Presentation transcript:

Ethernet “dominant” LAN technology: cheap $20 for 100Mbs! first wildey used LAN technology Simpler, cheaper than token LANs and ATM Kept up with speed race: 10, 100, 1000 Mbps Metcalfe’s Etheret sketch : DataLink Layer

Ethernet Frame Structure Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame Preamble: 7 bytes with pattern 10101010 followed by one byte with pattern 10101011 used to synchronize receiver, sender clock rates : DataLink Layer

Ethernet Frame Structure (more) Addresses: 6 bytes, frame is received by all adapters on a LAN and dropped if address does not match Type: indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk) CRC: checked at receiver, if error is detected, the frame is simply dropped : DataLink Layer

Ethernet: uses CSMA/CD A: sense channel, if idle then { transmit and monitor the channel; If detect another transmission abort and send jam signal; update # collisions; delay as required by exponential backoff algorithm; goto A } else {done with the frame; set collisions to zero} else {wait until ongoing transmission is over and goto A} : DataLink Layer

Ethernet’s CSMA/CD (more) Jam Signal: make sure all other transmitters are aware of collision; 48 bits; Exponential Backoff: Goal: adapt retransmission attempts to estimated current load heavy load: random wait will be longer first collision: choose K from {0,1}; delay is K x 512 bit transmission times after second collision: choose K from {0,1,2,3}… after ten or more collisions, choose K from {0,1,2,3,4,…,1023} : DataLink Layer

Ethernet Technologies: 10Base2 10: 10Mbps; 2: under 200 meters max cable length thin coaxial cable in a bus topology repeaters used to connect up to multiple segments repeater repeats bits it hears on one interface to its other interfaces: physical layer device only! : DataLink Layer

10BaseT and 100BaseT 10/100 Mbps rate; latter called “fast ethernet” T stands for Twisted Pair Hub to which nodes are connected by twisted pair, thus “star topology” CSMA/CD implemented at hub : DataLink Layer

10BaseT and 100BaseT (more) Max distance from node to Hub is 100 meters Hub can disconnect “jabbering adapter Hub can gather monitoring information, statistics for display to LAN administrators : DataLink Layer

Ethernet Switches layer 2 (frame) forwarding, filtering using LAN addresses Switching: A-to-B and A’-to-B’ simultaneously, no collisions large number of interfaces often: individual hosts, star-connected into switch Ethernet, but no collisions! : DataLink Layer

Ethernet Switches cut-through switching: frame forwarded from input to output port without awaiting for assembly of entire frame slight reduction in latency combinations of shared/dedicated, 10/100/1000 Mbps interfaces : DataLink Layer

Ethernet Switches (more) Dedicated Shared : DataLink Layer

Token Passing: IEEE802.5 standard 4 Mbps max token holding time: 10 ms, limiting frame length SD, ED mark start, end of packet AC: access control byte: token bit: value 0 means token can be seized, value 1 means data follows FC priority bits: priority of packet reservation bits: station can write these bits to prevent stations with lower priority packet from seizing token after token becomes free : DataLink Layer

Token Passing: IEEE802.5 standard FC: frame control used for monitoring and maintenance source, destination address: 48 bit physical address, as in Ethernet data: packet from network layer checksum: CRC FS: frame status: set by dest., read by sender set to indicate destination up, frame copied OK from ring DLC-level ACKing : DataLink Layer

Interconnecting LANs Q: Why not just one big LAN? Limited amount of supportable traffic: on single LAN, all stations must share bandwidth limited length: 802.3 specifies maximum cable length large “collision domain” (can collide with many stations) limited number of stations: 802.5 have token passing delays at each station : DataLink Layer