Electron Correlation Hartree-Fock results do not agree with experiment

Slides:



Advertisements
Similar presentations
Introduction to Computational Chemistry NSF Computational Nanotechnology and Molecular Engineering Pan-American Advanced Studies Institutes (PASI) Workshop.
Advertisements

Introduction to Møller-Plesset Perturbation Theory
Quantum Mechanics Calculations II Apr 2010 Postgrad course on Comp Chem Noel M. O’Boyle.
0 Jack SimonsJack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah Electronic Structure Theory Session 7.
Post Hartree-Fock Methods (Lecture 2)
Modelling of Defects DFT and complementary methods
Chemistry 6440 / 7440 Density Functional Theory. Electronic Energy Components Total electronic energy can be partitioned E = E T + E NE +E J + E X +E.
ChE 452 Lecture 16 Quantum Effects In Activation Barriers 1.
Statistical Mechanics and Multi- Scale Simulation Methods ChBE Prof. C. Heath Turner Lecture 03 Some materials adapted from Prof. Keith E. Gubbins:
CHE Inorganic, Physical & Solid State Chemistry Advanced Quantum Chemistry: lecture 4 Rob Jackson LJ1.16,
Molecular Quantum Mechanics
Introduction to Molecular Orbitals
Chapter 3 Electronic Structures
Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry.
Computational Chemistry
Density Functionals: Basic DFT Theory Sergio Aragon San Francisco State University CalTech PASI January 4-16, 2004.
Introduction to ab initio methods I Kirill Gokhberg.
Basic Quantum Chemistry: how to represent molecular electronic states
Chemistry 6440 / 7440 Electron Correlation Effects.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2008 Dr. Susan Lait.
GGAs: A History P Briddon. Thomas Fermi First attempt to write E[n]. First attempt to write E[n]. An early DFT. An early DFT. Issue with KE: Used n 5/3.
Ab Initio Molecular Orbital Theory. Ab Initio Theory n Means “from first principles;” this implies that no (few) assumptions are made, and that the method.
Molecular Modeling: Density Functional Theory C372 Introduction to Cheminformatics II Kelsey Forsythe.
Density Functional Theory And Time Dependent Density Functional Theory
Lecture 8: Introduction to Density Functional Theory Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dept. of Chemistry.
An Introduction to Molecular Orbital Theory. Levels of Calculation Classical (Molecular) Mechanics quick, simple; accuracy depends on parameterization;
Computational Chemistry
Lectures Introduction to computational modelling and statistics1 Potential models2 Density Functional.
Breaking Bonds: Consider the H 2 Molecule We can draw out possible electron configurations (configuration state functions/determinants) with which to represent.
Atomic units The atomic units have been chosen such that the fundamental electron properties are all equal to one atomic unit. (me=1, e=1, = h/2 = 1,
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 23 The Chemical Bond in Diatomic Molecules.
Norm Conserving Pseudopotentials and The Hartree Fock Method Eric Neuscamman Mechanical and Aerospace Engineering 715 May 7, 2007.
0 Jack SimonsJack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah Electronic Structure Theory Session 3.
ChE 551 Lecture 23 Quantum Methods For Activation Barriers 1.
Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E 0 – exact ground state energy E HF – HF energy.
Atoms are bonded together by electrons, but what is a bond? A bond forms when two atomic orbitals overlap to make a molecule more stable than when there.
Background 1927: Introduction of the Thomas-Fermi model (statistics of electrons). 1964: Hohenberg-Kohn paper proving existence of exact Density Function.
ELECTRONIC STRUCTURE OF MATERIALS From reality to simulation and back A roundtrip ticket.
Fundamentals of DFT R. Wentzcovitch U of Minnesota VLab Tutorial Hohemberg-Kohn and Kohn-Sham theorems Self-consistency cycle Extensions of DFT.
Ab initio Reactant – Transition State Structure – Product 1.Selection of the theoretical model 2.Geometry optimization 3.Frequency calculation 4.Energy.
TURBOMOLE Lee woong jae.
Fundamentals of Density Functional Theory Santa Barbara, CA Walter Kohn Physics-Chemistry University of California, Santa Barbara
Chemistry 700 Lectures. Resources Grant and Richards, Foresman and Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc., 1996)
Last hour: Electron Spin Triplet electrons “avoid each other”, the WF of the system goes to zero if the two electrons approach each other. Consequence:
Electron Correlation Methods
Quantum Methods For Adsorption
Physics “Advanced Electronic Structure” Lecture 2. Density Functional Theory Contents: 1. Thomas-Fermi Theory. 2. Density Functional Theory. 3.
1 MODELING MATTER AT NANOSCALES 6. The theory of molecular orbitals for the description of nanosystems (part II) Perturbational methods for dealing.
Lecture 5. Many-Electron Atoms. Pt
Multiply Charged Ions Quantum Chemical Computations Trento, May 2002 Lecture 2.
Molecular quantum mechanics - electron has cartesian and spin coordinates one electron functions one electron functions - no spin operator in electronic.
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
Dissociation of H 2 Do HF calculations for different values of the H-H internuclear distance (this distance is fixed since we are in the Born- Oppenheimer.
©2011, Jordan, Schmidt & Kable Lecture 13 Lecture 13 Self-consistent field theory This is how we do it.
Lecture 9. Many-Electron Atoms
Ch.1. Elementary Quantum Chemistry
Structure of Presentation
Exchange-Correlation Functionals
Molecular Models.
Computational Chemistry:
3: Density Functional Theory
PHY 752 Solid State Physics
Statistical Mechanics and Multi-Scale Simulation Methods ChBE
Electronic Structure Theory
Electronic Structure Theory
Density Functional Theory (introduced for many-electron systems)
Quantum Chemistry / Quantum Mechanics Density Functional Theory
Hartree Self Consistent Field Method
Orbitals, Basis Sets and Other Topics
Presentation transcript:

Electron Correlation Hartree-Fock results do not agree with experiment Heirarchy of methods to treat electron-electron interactions electron correlation ie what approximation do we use for H? repulsion - attraction - attraction + Hartree-Fock theory – just consider 1 electron + “average” repulsion Need an initial guess of the average repulsion (ie the electron density) Iterate until self-consistent

What Tools Can We Use? Density Functional Theory  quantum method  in principle “exact”  faster than traditional ab initio  variable accuracy  no systematic improvement Walter Kohn, Nobel Prize 1998

Density Functional Theory The energy and electronic properties of the ground state are uniquely determined by the electron density: E = E[] In principal this expression is exact! But we don’t know what the functional is Use model systems and fitting to derive expressions giving different “functionals” The electron density is something we can “see” The electron density is a 3-dimensional property whereas wavefunction-based methods are 3N dimensional Using the Kohn-Sham orbitals DFT is mathematically equivalent to HF theory

Density Functional Theory ET The kinetic energy EV The Coulomb attraction of the electrons to the nucleus EJ The Coulomb energy of that the electrons would have in their own field, assuming they moved independently and if each electron repelled itself EX The Exchange energy EC The Correlation energy EXC corrects for the false assumptions in EJ

First Generation DFT Energy a functional of r alone Analytic expressions derived from the uniform electron gas Local Density Approximation Local Spin Density Approximation LDA functionals were originally developed for metals and assume the electron density is constant, not a sensible assumption in a molecule. LDA tends to underestimate exchange energies by up to 10%, to overestimate correlation energies by up to a factor of two and to “overbind” molecules. This approximate cancellation of errors made initial LDA results look so promising…

Second Generation DFT Used LDA/uniform electron gas expressions for ET, EV and EJ Invoked the generalised gradient approximation (GGA) for EXC to attempt to correct for non-local interactions, inhomogeneities in the electron gas, using the gradient of the density: Meta functionals incorporate the local kinetic energy density, t (r), which is dependent on the Kohn-Sham orbitals:

Second Generation DFT GGAs, and meta-GGAs are “local” functionals because the electronic energy density at a single spatial point depends only on the behavior of the electronic density and kinetic energy at and near that point. Examples of second generation functionals include Becke’s 1986 exchange functional, the LYP correlation functional, and the PBE and the PW91 functionals These functionals are commonly used in plane wave DFT calculations and in calculations on large systems

Third Generation DFT Functionals where the electronic energy is a functional of the electron density, its gradient and its Laplacian, that is, E[r; r; 2r] Hybrid functionals where a proportion of the exact HF exchange energy is included to introduces a degree of “non- local” behaviour The most popular hybrid functional is the B3LYP functional: where the coefficients were found empirically Hybrid functionals generally perform better than GGA functionals in chemical applications

Fourth Generation DFT Meta-hybrid functionals Double hybrid functionals Extensively parametrised functionals…. These functionals attempt to correct for the “local” behaviour of DFT and give much better results for systems with weak or non-bonded interactions

DFT Performance LDA: GGA: Hybrid functionals: Works well for anything where the uniform electron gas is a sensible model (eg metals) and for bulk properties Not accurate for chemical applications GGA: Fast Binding energies to about 20 kcal/mol Hybrid functionals: Slower (HF exchange costs) 3-12 kcal/mol errors Fourth generation functionals: Relatively expensive… Claim to do a lot better

Density Functional Theory Density Functional Theory is only marginally more expensive than HF theory. Because it contains an estimate of the electron correlation energy it should always be used in preference to HF HOWEVER, DFT calculations must be validated by comparison against some higher level of theory (sometimes they fail catastrophically…)

Model Chemistries Theoretical models are defined by specifying a correlation procedure and a basis set HF/STO-3G: A very simple theoretical model (level of theory) MP2/6-31G(d): An intermediate level of theory CCSD(T)/6-311+G(3d,2p): A high level of theory B3LYP/6-31G(d): A cost effective level of theory Some properties (eg geometry) can be obtained reliably at simple levels of theory Others (eg reaction energy, reaction barrier) require a high level of theory

Beyond HF: Electron Correlation Methods For a given basis set, the difference between the exact energy and the HF energy is the correlation energy, ~ 85 kJ/mol correlation energy per electron pair Dynamic correlation: electrons repel each other and get out of each other’s way; dynamical motions of electrons are correlated, so electron repulsion is less than in an independent electron model such as HF theory Static Electron Correlation/Non-Dynamic Electron Correlation/Intrinsic Electron Correlation: arises when a single configurational treatment (ie a single determinant) is not adequate to describe the problem (eg the ground state of the molecule)

Frozen Core Approximation assume that only the valence electrons are correlated the core orbitals are treated at the HF level of theory This assumption is normally good for systems involving first and second row atoms For third row, or higher, the approximation should probably be checked for example, if you are not careful in studying a molecule like CaF2, you may find that in the Ca2+ species none of the electrons have been correlated because the 3p orbitals are considered core orbitals (and the F atoms have effectively removed the valence 4s electrons)

Møller-Plesset Perturbation Theory Although correlation energy is large on a chemical scale it is small compared to the total energy of an atom We can treat correlation as a perturbation to the HF Hamiltonian Expand the perturbation in l: Møller-Plesset perturbation theories, MP2, MP3, MP4… are obtained by setting l=1 and truncating at the 2nd, 3rd, 4th… order terms in l for the wavefunction (l+1 for the energy).

Møller-Plesset Perturbation Theory Not a variational method Overcorrection possible Not appropriate if compound is not well described by a simple Lewis structure Does not do well in cases of spin contamination Computational effort nN4 (MP2) n3N4 (MP4) for n electrons and N orbitals Does not converge smoothly (oscillates) Sometimes nonconvergent series (eg Ne)   MP2 often gives better results than MP3, MP4…

Configuration Interaction Mathematically we want to allow electrons in the wavefunction to be able to move together We can re-expand the wavefunction in terms of some orthogobal basis that encapsulates this concerted movement We can use all possible HF-SCF determinants as this basis A determinant describes an electron configuration, “excited” determinants excite one or more electrons into unoccupied orbitals They are all orthogonal to each other This single, double, triple etc excitation correlates the electrons

Configuration Interaction The wavefunction is expanded as a linear combination of all possible HF-SCF determinants The CI coefficients bs are determined variationally The size of the FCI calculation depends on the number of electrons, n, and the number of orbitals, N. For N basis functions there are 2N spinorbitals and the total number of determinants is (2N!)/[n!(2N-n)!] ~ eN

Configuration Interaction O occupied V virtual orbitals CIS – include all possible single electron excitations: simplest qualitative method for electronic excited states, but not for correlation of the ground state CISD – include all single and double excitations (yields ~O2V2 determinants) most useful for correlating the ground state CISDT – singles, doubles and triples (~O3V3 determinants) Full CI (FCI) – (~((O+V)!/O!V!) determinants) exact for a given basis set

Coupled Cluster Theory The CI expansion converges slowly Some excitations are more important than others… Define a cluster operator: T= 1 + T1 + T2 + T3 +… Write Y as Where This is particularly clever because

Coupled Cluster Theory If we truncate T T= 1 + T1 + T2 Then eT will contain products of T1 and T2 that are equivalent to higher order excitations T12 represents all double excitations arising from “disconnected” single excitations, T22 represents all quadruple excitations arising from disconnected double excitations These disconnected excitations turn out to be important (than the generic n-electron excitations) so the coupled cluster wavefunction converges much more rapidly than the CI expansion

CCSD(T) Truncate T T= 1 + T1 + T2 Include T3 as a perturbation Simpler and faster and almost as accurate as CCSDT The CCSD(T) method is the highest level theory available for routine use. With a large basis set CCSD(T) is considered the “Gold Standard” for dynamic electron correlation: CCSD(T)/aug-ccpVTZ

Static Correlation If the wavefunction is not well described as a single determinant Species with significant diradical character Transition States (frequently) Bond breaking processes Often for excited electronic states Unsaturated transition metal complexes molecules containing atoms with low-lying excited states (Li, Be, transition metals, etc) along reaction paths in many chemical and photochemical reactions Generally any species with near degeneracies The T1 diagnostic in CC methods is an indicator of the validity of a single reference approach. T1 > 0.01 casts suspicion on the applicability of single reference methods.

Multi-Configuration Methods Similar to the CI expansion Optimise the one-electron orbitals rather than leave them at their HF values Eg MR-CI(SD), CASSCF, CASPT2 … Starting to get into some serious computational expense…

Cyclobutadiene 4 p electrons and 4 p molecular orbitals Each diagram represents a determinant (a configuration state function) The overall wavefunction is a combination of the possible determinants The coefficients of the orbitals change with their occupancy (consider square vs rectangular cyclobutadiene)

Cyclobutadiene Active space: 4 electrons in 4 orbitals Core inactive space: remaining 16 electrons in 8 orbitals Virtual/Unoccupied orbitals

Assessment of Correlated Methods Av. Error (kcal/mol) vs FCI Approx. Time Factor HF 5-30 ON2-3 DFT 2-10 ON3 MP2 17.4 ON4 MP3 14.4 MP4 3.7 ON5 MP5 3.2 CISD 13.8 ON6 CCSD 4.4 CCSD(T) 0.7 O2N7 CCSDT 0.5 O2N>7 CCSDTQ 0.0 O2N>>7

Model Chemistries Choosing a method (theoretical model) in ab initio calculations involves striking a compromise between accuracy and computational expense – the more reliable the calculations generally the more computationally demanding The method chosen depends on The size of the molecule being examined The property being calculated The accuracy that is required The computing resources that are available

Exact Soln of Schrödinger Equation Pople Diagram John Pople Nobel Prize 1998 A specific level of theory (theoretical model) corresponds to a combination of correlation procedure and basis set Improvement of Correlation Treatment Improvement of Basis Set HF MP2 MP4 CCSD(T) Full Configuration Interaction Exact Soln of Schrödinger Equation Completely Flexible Basis Set STO-3G 3-21G 6-31G(d) 6-311+G(2df,p) The better you do the longer it takes

Composite Methods Extrapolate to the bottom right corner of the Pople diagram Aim is better than 1 cal/mol accuracy Gaussian “n” methods G1, G2, G2MP2, G3… Complete Basis Set Limit (CBS) methods Weizmann Wn methods HEAT method…

Summary Computational chemistry can be used to predict molecular properties, such as: Equilibrium geometries Transition structures Reaction potential energy surfaces Many tools are available. In general, the more accurate the method the more costly it is to use Before using a particular approach and methodology, you need to make sure it is accurate enough for your particular problem

Some Observations Chemists like simple systems Chemists are interested in electrons so they tend to use the most accurate methods they can Big problems need to be distilled into small enough bits to provide sensible results Everything kicks up more questions, nothing is ever as simple as it seems