Experimental design of fMRI studies SPM Course 2014 Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks.

Slides:



Advertisements
Similar presentations
The General Linear Model (GLM)
Advertisements

J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Bayesian inference.
Event-related fMRI Christian Ruff With thanks to: Rik Henson.
Experimental Design Christian Ruff With thanks to: Rik Henson Daniel Glaser Christian Ruff With thanks to: Rik Henson Daniel Glaser.
Bayesian Inference Lee Harrison York Neuroimaging Centre 14 / 05 / 2010.
SPM – introduction & orientation introduction to the SPM software and resources introduction to the SPM software and resources.
Statistical Inference
Overview of SPM p <0.05 Statistical parametric map (SPM)
The General Linear Model Christophe Phillips Cyclotron Research Centre University of Liège, Belgium SPM Short Course London, May 2011.
SPM Course Zurich, February 2012 Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London.
SPM 2002 Experimental Design Daniel Glaser Institute of Cognitive Neuroscience, UCL Slides from: Rik Henson, Christian Buchel, Karl Friston, Chris Frith,
SPM Software & Resources Wellcome Trust Centre for Neuroimaging University College London SPM Course London, May 2011.
SPM Software & Resources Wellcome Trust Centre for Neuroimaging University College London SPM Course London, October 2008.
SPM for EEG/MEG Guillaume Flandin
Event-related fMRI (er-fMRI)
Wellcome Centre for Neuroimaging at UCL
Group Analyses Guillaume Flandin SPM Course Zurich, February 2014
Group analysis Kherif Ferath Wellcome Trust Centre for Neuroimaging University College London SPM Course London, Oct 2010.
1st level analysis: basis functions, parametric modulation and correlated regressors. 1 st of February 2012 Sylvia Kreutzer Max-Philipp Stenner Methods.
Experimental design of fMRI studies Methods & models for fMRI data analysis in neuroeconomics April 2010 Klaas Enno Stephan Laboratory for Social and Neural.
Bayesian models for fMRI data
Gordon Wright & Marie de Guzman 15 December 2010 Co-registration & Spatial Normalisation.
Experimental design of fMRI studies SPM Course 2012 Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks.
Group analyses of fMRI data Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social and Neural.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research University of Zurich With many thanks for slides & images to: FIL Methods.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
The General Linear Model (GLM) Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social & Neural.
Experimental design of fMRI studies Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social and.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
Multiple comparison correction Methods & models for fMRI data analysis 18 March 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Spatial preprocessing of fMRI data Methods & models for fMRI data analysis 25 February 2009 Klaas Enno Stephan Laboratory for Social and Neural Systrems.
The General Linear Model (GLM)
The General Linear Model (GLM) SPM Course 2010 University of Zurich, February 2010 Klaas Enno Stephan Laboratory for Social & Neural Systems Research.
Spatial preprocessing of fMRI data
Methods & models for fMRI data analysis: Information on the exam (HS 2008) Klaas Enno Stephan Laboratory for Social & Neural Systems Research Institute.
Classical (frequentist) inference Methods & models for fMRI data analysis 11 March 2009 Klaas Enno Stephan Laboratory for Social and Neural System Research.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Experimental design of fMRI studies Methods & models for fMRI data analysis 12 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems.
Classical (frequentist) inference Methods & models for fMRI data analysis 22 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for.
Group analyses of fMRI data Methods & models for fMRI data analysis 28 April 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Multiple comparison correction Methods & models for fMRI data analysis 29 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for Empirical.
Group analyses of fMRI data Methods & models for fMRI data analysis 26 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
The General Linear Model
Multiple Comparison Correction in SPMs Will Penny SPM short course, Zurich, Feb 2008 Will Penny SPM short course, Zurich, Feb 2008.
With many thanks for slides & images to: FIL Methods group, Virginia Flanagin and Klaas Enno Stephan Dr. Frederike Petzschner Translational Neuromodeling.
Multiple testing Justin Chumbley Laboratory for Social and Neural Systems Research Institute for Empirical Research in Economics University of Zurich With.
Group analyses of fMRI data Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group, particularly.
Experimental design of fMRI studies Methods & models for fMRI data analysis 01 November 2013 Klaas Enno Stephan Translational Neuromodeling Unit (TNU)
Institute for Biomedical Engineering (ETH Zurich)‏ & Computational Neuroeconomics Group (Univ. of Zurich)
Bayesian models for fMRI data Methods & models for fMRI data analysis November 2011 With many thanks for slides & images to: FIL Methods group, particularly.
Methods & models for fMRI data analysis – HS 2013 David Cole Andrea Diaconescu Jakob Heinzle Sandra Iglesias Sudhir Shankar Raman Klaas Enno Stephan.
Experimental design of fMRI studies Methods & models for fMRI data analysis November 2012 Sandra Iglesias Translational Neuromodeling Unit (TNU) Institute.
Methods for Dummies Second level Analysis (for fMRI) Chris Hardy, Alex Fellows Expert: Guillaume Flandin.
General Linear Model and fMRI Rachel Denison & Marsha Quallo Methods for Dummies 2007.
The General Linear Model
1 st level analysis: Design matrix, contrasts, and inference Stephane De Brito & Fiona McNabe.
Multiple comparison correction
Mixture Models with Adaptive Spatial Priors Will Penny Karl Friston Acknowledgments: Stefan Kiebel and John Ashburner The Wellcome Department of Imaging.
The General Linear Model (GLM)
The General Linear Model (GLM)
Wellcome Trust Centre for Neuroimaging University College London
Keith Worsley Keith Worsley
The General Linear Model (GLM)
From buttons to code Eamonn Walsh & Domenica Bueti
The General Linear Model (GLM)
Statistical Parametric Mapping
Wellcome Centre for Neuroimaging at UCL
Wellcome Centre for Neuroimaging, UCL, UK.
Mixture Models with Adaptive Spatial Priors
The General Linear Model (GLM)
Presentation transcript:

Experimental design of fMRI studies SPM Course 2014 Sandra Iglesias Translational Neuromodeling Unit University of Zurich & ETH Zurich With many thanks for slides & images to: Klaas Enno Stephan, FIL Methods group, Christian Ruff

Overview of SPM RealignmentSmoothing Normalisation General linear model Statistical parametric map (SPM) Image time-series Parameter estimates Design matrix Template Kernel Gaussian field theory p <0.05 Statisticalinference 2

Overview of SPM General linear model Statistical parametric map (SPM) Parameter estimates Design matrix Gaussian field theory p <0.05 Statisticalinference 3 Research question: Which neuronal structures support face recognition? Hypothesis: The fusiform gyrus is implicated in face recognition Experimental design

Overview of SPM General linear model Statistical parametric map (SPM) Parameter estimates Design matrix Gaussian field theory p <0.05 Statisticalinference 4 Research question: Which neuronal structures support face recognition? Hypothesis: The fusiform gyrus is implicated in face recognition Experimental design

Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear- Polynomial expansions, neurometric functions Factorial designs Categorical- Interactions and pure insertion Parametric- Linear and nonlinear interactions - Psychophysiological Interactions Overview 5

Aim: –Neuronal structures underlying a single process P? Procedure: – Contrast: [Task with P] – [control task without P ] = P  the critical assumption of „pure insertion“ Example: Cognitive subtraction [Task with P] – [task without P ] = P – = 6

Aim: –Neuronal structures underlying a single process P? Procedure: – Contrast: [Task with P] – [control task without P ] = P  the critical assumption of „pure insertion“ Example: Cognitive subtraction [Task with P] – [task without P ] = P – = 7

-  P implicit in control condition? -  P implicit in control condition? „Queen!“ „Aunt Jenny?“ „Queen!“ „Aunt Jenny?“ „Related“ stimuli „Related“ stimuli -  Several components differ! „Distant“ stimuli „Distant“ stimuli Name Person! Name Gender! -  Interaction of task and stimuli (i.e. do task differences depend on stimuli chosen)? -  Interaction of task and stimuli (i.e. do task differences depend on stimuli chosen)? Same stimuli, different task Same stimuli, different task Cognitive subtraction: Baseline problems Which neuronal structures support face recognition ? 8

A categorical analysis Experimental design Face viewingF Object viewingO F - O = Face recognition O - F = Object recognition …under assumption of pure insertion Kanwisher N et al. J. Neurosci. 1997; 9

Categorical design 10

Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear- Polynomial expansions, neurometric functions Factorial designs Categorical- Interactions and pure insertion Parametric- Linear and nonlinear interactions - Psychophysiological Interactions Overview 11

One way to minimize the baseline/pure insertion problem is to isolate the same process by two or more separate comparisons, and inspect the resulting simple effects for commonalities A test for such activation common to several independent contrasts is called “conjunction” Conjunctions can be conducted across a whole variety of different contexts: tasks stimuli senses (vision, audition) etc. Note: the contrasts entering a conjunction must be orthogonal (this is ensured automatically by SPM) Conjunctions 12

Conjunctions Example: Which neural structures support object recognition, independent of task (naming vs. viewing)? Task (1/2) Viewing Naming Stimuli (A/B) Objects Colours Visual ProcessingV Object Recognition R Phonological RetrievalP 13 A1 A2 B1B2

Conjunctions (Object - Colour viewing) [B1 - A1] & (Object - Colour naming) [B2 – A2] [ V,R - V ] & [ P,V,R - P,V ] = R & R = R Price et al Common object recognition response (R ) A1 B1 A2 B2 14 A1 Visual Processing V B1 Object Recognition R B2 Visual ProcessingV Phonological RetrievalP Object Recognition R A2 Visual ProcessingV Phonological RetrievalP Stimuli (A/B) Stimuli (A/B) Objects Colours Task (1/2) Viewing Naming Viewing Naming Which neural structures support object recognition?

Conjunctions 15

Test of global null hypothesis: Significant set of consistent effectsTest of global null hypothesis: Significant set of consistent effects  “Which voxels show effects of similar direction (but not necessarily individual significance) across contrasts?”  Null hypothesis: No contrast is significant: k = 0  does not correspond to a logical AND ! Test of conjunction null hypothesis: Set of consistently significant effectsTest of conjunction null hypothesis: Set of consistently significant effects  “Which voxels show, for each specified contrast, significant effects?”  Null hypothesis: Not all contrasts are significant: k < n  corresponds to a logical AND A1-A2 B1-B2 p(A1-A2) <  + p(B1-B2) <  + Friston et al.Neuroimage, 25: Friston et al. (2005). Neuroimage, 25: Nichols et al. (). Neuroimage, 25: Nichols et al. (2005). Neuroimage, 25: Two types of conjunctions 16

F-test vs. conjunction based on global null. Friston et al. 2005, Neuroimage, 25: grey area: bivariate t-distriution under global null hypothesis 17  Null hypothesis: No contrast is significant: k = 0

Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear- Polynomial expansions, neurometric functions Factorial designs Categorical- Interactions and pure insertion Parametric- Linear and nonlinear interactions - Psychophysiological Interactions Overview 18

Parametric designs Parametric designs approach the baseline problem by: –Varying the stimulus-parameter of interest on a continuum, in multiple (n>2) steps... –... and relating measured BOLD signal to this parameter Possible tests for such relations are manifold: Linear Nonlinear: Quadratic/cubic/etc. (polynomial expansion) Model-based (e.g. predictions from learning models) 19

Parametric modulation of regressors by time Büchel et al. 1998, NeuroImage 8:

“User-specified” parametric modulation of regressors 21 Polynomial expansion & orthogonalisation Büchel et al. 1998, NeuroImage 8:

Investigating neurometric functions (= relation between a stimulus property and the neuronal response) Stimulus awareness Stimulus intensity Pain intensity Pain threshold : 410 mJ P1 P2 P3 P4 P0-P4: Variation of intensity of a laser stimulus applied to the right hand (0, 300, 400, 500, and 600 mJ) Büchel et al. 2002, J. Neurosci. 22: P0 22 P0 P1 P2 P3 P4

Neurometric functions  Stimulus awareness dorsal ACC dorsal ACC  Pain intensity ventral pACC  Stimulus intensity dorsal pACC Büchel et al. 2002, J. Neurosci. 22:

Model-based regressors general idea: generate predictions from a computational model, e.g. of learning or decision-making Commonly used models: –Rescorla-Wagner learning model –temporal difference (TD) learning model –Bayesian models use these predictions to define regressors include these regressors in a GLM and test for significant correlations with voxel-wise BOLD responses 24

Model-based fMRI analysis Gläscher & O‘Doherty 2010, WIREs Cogn. Sci. 25 A A B B t outcome

Model-based fMRI analysis Gläscher & O‘Doherty 2010, WIREs Cogn. Sci

Categorical designs Subtraction - Pure insertion, evoked / differential responses Conjunction - Testing multiple hypotheses Parametric designs Linear - Adaptation, cognitive dimensions Nonlinear- Polynomial expansions, neurometric functions Factorial designs Categorical- Interactions and pure insertion Parametric- Linear and nonlinear interactions - Psychophysiological Interactions Overview 27

Main effects and interactions A1A2 B2B1 Task (1/2) Viewing Naming Stimuli (A/B) Objects Colours Main effect of task:(A1 + B1) – (A2 + B2)Main effect of task:(A1 + B1) – (A2 + B2) Main effect of stimuli: (A1 + A2) – (B1 + B2)Main effect of stimuli: (A1 + A2) – (B1 + B2) Interaction of task and stimuli: Can show a failure of pure insertionInteraction of task and stimuli: Can show a failure of pure insertion (A1 – B1) – (A2 – B2) 28

Factorial design 29 A1A2 B2B1 Task (1/2) Viewing Naming Stimuli (A/B) Objects Colours A1 B1 A2 B2 Main effect of task: (A1 + B1) – (A2 + B2)

Factorial design 30 A1A2 B2B1 Task (1/2) Viewing Naming Stimuli (A/B) Objects Colours A1 B1 A2 B2 Main effect of stimuli: (A1 + A2) – (B1 + B2)

Factorial design 31 A1A2 B2B1 Task (1/2) Viewing Naming Stimuli (A/B) Objects Colours A1 B1 A2 B2 Interaction of task and stimuli: (A1 – B1) – (A2 – B2) Interaction of task and stimuli: (A1 – B1) – (A2 – B2)

Main effects and interactions A1A2 B2B1 Task (1/2) Viewing Naming Stimuli (A/B) Objects Colours Colours Objects Colours Objects interaction effect (Stimuli x Task) (Stimuli x Task) ViewingNaming Main effect of task:(A1 + B1) – (A2 + B2)Main effect of task:(A1 + B1) – (A2 + B2) Main effect of stimuli: (A1 + A2) – (B1 + B2)Main effect of stimuli: (A1 + A2) – (B1 + B2) Interaction of task and stimuli: Can show a failure of pure insertionInteraction of task and stimuli: Can show a failure of pure insertion (A1 – B1) – (A2 – B2) Objects 32 Is the inferotemporal region implicated in phonological retrieval during object naming? Colours

Example: evidence for inequality-aversion Tricomi et al. 2010, Nature 33

Psycho-physiological interactions (PPI) We can replace one main effect in the GLM by the time series of an area that shows this main effect. E.g. let's replace the main effect of stimulus type by the time series of area V1: Task factor Task A Task B Stim 1 Stim 2 Stimulus factor T A /S 1 T B /S 1 T A /S 2 T B /S 2 GLM of a 2x2 factorial design: main effect of task main effect of stim. type interaction main effect of task V1 time series  main effect of stim. type psycho- physiological interaction 34

PPI example: attentional modulation of V1→V5 Friston et al. 1997, NeuroImage 6: Büchel & Friston 1997, Cereb. Cortex 7: V1 V1 x Att. = V5 V5 Attention 35

PPI: interpretation Two possible interpretations of the PPI term: V1 Modulation of V1  V5 by attention Modulation of the impact of attention on V5 by V1. V1V5 V1 V5 attention V1 attention 36

Thank you 37

38