LHC-Collider Physics and Simulation for High Energy Cosmic Rays

Slides:



Advertisements
Similar presentations
Convergence to GZK prediction in UHE measurements of the primary energy spectrum of cosmic rays J. N. Capdevielle, APC, University Paris Diderot
Advertisements

Photons and Jets from the first year of ALICE A
TIERRAS: an AIRES package to simulate high energy cosmic ray showers underground and underwater Matías Tueros Instituto de Física La Plata – Universidad.
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Towards the trans-GZK area ray (from AGASA, AUGER, HIRES TO JEM -EUSO) J. N. Capdevielle, APC, University Paris Diderot
The Composition of Ultra High Energy Cosmic Rays Through Hybrid Analysis at Telescope Array Elliott Barcikowski PhD Defense University of Utah, Department.
Application for Pierre Auger Observatory.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
EAS EXPERIMENT ON BOARD OF THE AIRBUS A380 J. N. Capdevielle, F. Cohen, PCC, College de France K. Jedrzejczak, B. Szabelska, J. Szabelski, T. Wibig The.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
The performance of LHCf calorimeter was tested at CERN SPS in For electron of GeV, the energy resolution is < 5% and the position resolution.
AGASA Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
TAUP 2005: Zaragoza Observations of Ultra-high Energy Cosmic Rays Alan Watson University of Leeds Spokesperson for Pierre Auger Observatory
Updating Monte Carlo collision generators with LHC data up to √s = 8 TeV Jean-Noël CAPDEVIELLE APC, IN2P3,CNRS Univ. Paris-Diderot, Paris.
Ultra high energy cosmic rays: highlights of recent results J. Matthews Pierre Auger Observatory Louisiana State University 19 August August.
MP BACH MultiPixel Balloon-borne Air CHerenkov Detection of Iron Cosmic Rays Using Direct Cherenkov Radiation Imaged with a High Resolution Camera 1.
First energy estimates of giant air showers with help of the hybrid scheme of simulations L.G. Dedenko M.V. Lomonosov Moscow State University, Moscow,
MP BACH MultiPixel Balloon-borne Air CHerenkov Detection of Iron Cosmic Rays Using Direct Cherenkov Radiation Imaged with a High Resolution Camera University.
Konstantin Belov. GZK-40, Moscow. Konstantin Belov High Resolution Fly’s Eye (HiRes) Collaboration GZK-40. INR, Moscow. May 17, measurements by fluorescence.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
A new approach to EAS investigations in energy region eV R.P.Kokoulin for DECOR Collaboration Moscow Engineering Physics Institute, Russia.
TAUP Conference, Sendai September The primary spectrum in the transition region between direct and indirect measurements (10 TeV – 10 PeV)
Contributions of the University of Bucharest to the study of high energy cosmic rays in the framework of the KASCADE-Grande experiment Octavian Sima Faculty.
Atmospheric shower simulation studies with CORSIKA Physics Department Atreidis George ARISTOTLE UNIVERSITY OF THESSALONIKI.
Geomagnetic Spectroscopy: An Estimation of Primary Mass of Cosmic Rays Rajat K Dey 1,2 Arunava Bhadra 2 Jean-No ë l Capdevielle 3 1 Department of Physics.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
Status and first results of the KASCADE-Grande experiment
AGASA Results Masahiro Teshima for AGASA collaboration
XXXI International Cosmic Ray Conference, ICRC 2009 Lodz, Poland, July 7-15, 2009 Time structure of the Extensive Air Shower front with the ARGO-YBJ experiment.
Laboratory Particle- Astrophysics P. Sokolsky High Energy Astrophysics Institute, Univ. of Utah.
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
Air-showers, bursts and high-energy families detected by hybrid experiment at Mt.Chacaltaya M.Tamada Kinki University M.Tamada ICRC2011, Beijing, 15 Aug.
Hybrid measurement of CR light component spectrum by using ARGO-YBJ and WFCTA Shoushan Zhang on behalf of LHAASO collaboration and ARGO-YBJ collaboration.
1 João Espadanal, Patricia Gonçalves, Mário Pimenta Santiago de Compostela 3 rd IDPASC school Auger LIP Group 3D simulation Of Extensive Air.
“The Cosmic Ray composition in the knee region and the hadronic interaction models” G. Navarra INFN and University, Torino, Italy For the EAS-TOP Collaboration.
June 6, 2006 CALOR 2006 E. Hays University of Chicago / Argonne National Lab VERITAS Imaging Calorimetry at Very High Energies.
Status of the Pierre Auger Observatory Aaron S. Chou Fermilab Fermilab Users’ Meeting June 3, 2003.
Cosmic ray physics in ALICE Katherin Shtejer Díaz For the ALICE Collaboration LatinoAmerican Workshop on High Energy Physics: Particles and Strings, Havana,
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
The KASCADE-Grande Experiment: an Overview Andrea Chiavassa Universita’ di Torino for the KASCADE-Grande Collaboration.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
Study of VHE Cosmic Ray Spectrum by means of Muon Density Measurements at Ground Level I.I. Yashin Moscow Engineering Physics Institute,
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
AMIGA – A direct measurement of muons in Pierre Auger Observatory
Workshop on AstroParticle Physics, WAPP 2009 Bose Institute, Darjeeling, December 2009 Extensive Air Showers and Astroparticle Physics Observations and.
Influence of diffractive interactions on cosmic rays air showers ABSTRACT: A comparative study of commonly used hadronic collision simulation packages.
QUARKS-2010, Kolomna1 Study of the Energy Spectrum and the Composition of the Primary Cosmic Radiation at Super-high Energies.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
Olivier Deligny for the Pierre Auger Collaboration IPN Orsay – CNRS/IN2P3 TAUP 2007, Sendai Limit to the diffuse flux of UHE ν at EeV energies from the.
AGASA Results Masahiro Teshima Max-Planck-Institut für Physik, München, Germany for AGASA collaboration.
Physics whit ACORDE (ALICE Cosmic ray detector) Arturo Fernández for ACORDE-ALICE group.
High Energy Cosmic Rays The Primary Particle Types Paul Sommers for Alan Watson Epiphany Conference, Cracow January 10, 2004.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Cosmic Ray Composition Primary cosmic particles collide with atoms in the Earth's atmosphere and produce a cascade of short lived particles, which can.
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
Scaling behavior of lateral distribution of electrons in EAS
TREND workshop agenda 0. Introduction and round-table
Andrea Chiavassa Universita` degli Studi di Torino
Cosmic Rays at Extreme Energies The Pierre Auger Observatory
Electron Observations from ATIC and HESS
Pierre Auger Observatory Present and Future
Comparison Of High Energy Hadronic Interaction Models
Comparison Of High Energy Hadronic Interaction Models
Karen Andeena, Katherine Rawlinsb, Chihwa Song*a
The Aperture and Precision of the Auger Observatory
Studies and results at Pierre Auger Observatory
Presentation transcript:

LHC-Collider Physics and Simulation for High Energy Cosmic Rays J. N. Capdevielle, APC, University Paris Diderot capdev@apc.univ-paris7.fr

Outline General properties of giant EAS The extrapolation at UHE The treatment of inclined GAS in AGASA The treatment of the vertical energy estimator Amendments of experimental data and general convergence to GZK prediction Mass composition at UHE

Hybrid approach to the primary cosmic ray composition R. Attallah1 and J.N. Capdevielle2 1Physics Department, Univ. of Annaba, Algeria 2APC, Univ. of Paris 7, France

Introduction The chemical composition of primary cosmic rays furnishes crucial clues on their sources; A direct measurement of their high energy component runs out of statistics; Above 1014 eV, observation must resort to indirect method (air shower measurements);

Chemical composition Air shower interpretation is hampered by our lack of knowledge of the particle interaction physics; Air showers present very large fluctuations; Classic air shower experiments only sample the air shower at one depth. Extensive fitting and interpolation are needed.

A novel technique by IACT Ground-based detection of the Direct Cherenkov (DC) light emitted by the primary particle; The intensity of this light is proportional to Z 2; Measurement of the energy spectrum for cosmic ray nuclei in the range 13-200 TeV (H.E.S.S.); Limited energy window.

(http://www.mpi-hd.mpg.de/hfm/HESS)

Hybrid detector DC-light detection can be combined with a classic air shower experiment in order to measure on an event-by-event basis: 1. the mass and energy of the primary particle; 2. the particle content of the shower; to test experimentally the different critera used for the identification of primary cosmic rays. to approach the elemental composition around the knee with validated criteria.

Monte Carlo calculations CORSIKA package v. 6.617 (Heck et al. 1998). Two independant high energy hadronic interaction models: 1. QGSJET v. II-03 (Ostapchenko 2006) 2. SIBYLL v. 2.3 (Engel et al. 1999). Fluka model v. 2005 at low energy (Ferrari et al. 2005).

Experimental conditions Primary particles considered: p, N, Fe (vertical). Primary energy: 50 TeV and 200 TeV Observation level at H.E.S.S. altitude (1830 m; 830.5 g/cm2). Detection energy thresholds: E  300 MeV, Ee  2 MeV 100 showers per run.

Electron lateral distribution

Muon lateral distribution

Hadron lateral distribution

Number of particles (50 TeV) Muons Hadrons 10 m 20 m Proton 8.8 (8.3) 24.3 (23.2) 6.5 (4.9) 11.1 (8.5) Nitrogen 6.9 (6.9) 21.9 (21.5) 2.5 (2.6) 5.5 (5.3) Iron 4.9 (4.5) 16.6 (14.7) 1.0 (0.8) 2.3

Number of particles (200 TeV) Muons Hadrons 10 m 20 m Proton 40.0 (37.2) 105.4 (97.8) 38.2 (35.4) 62.8 (56.5) Nitrogen 38.0 (33.1) 104.7 (94.7) 20.7 (18.1) 37.6 (32.1) Iron 29.5 (26.0) 89.1 (82.6) 13.0 (9.7) 25.4 (19.8)

Electrons vs. positrons

Electron size

Muon size

Primary Energy

Conclusion DC-light detection can be combined with a classic air shower experiment. Such a hybrid detector is able to test the different criteria used for primary cosmic ray identification. Validated criteria can be used to study the cosmic ray compostion around the knee.

Total p-p Cross-Section ~ ln2 s Current models predictions: 90-130 mb Aim of TOTEM: ~1% accuracy COMPETE Collaboration fits all available hadronic data and predicts: LHC: [PRL 89 201801 (2002)]

Acceptance All detectors with trigger capability non-diffractive minimum bias events dNch/dh [1/unit] Energy(GeV) per event Charged particles per event single-diffractive events  = - ln tg  All detectors with trigger capability Trigger acceptance > 95% for all inelastic events

Concorde Fox Charlie, Roissy, Octobre 78 Une centaine d’AR Paris New York pour exposer à 17000m d’altitude deux chambres à émulsion (pendant 270H).

Chambers for Balloon and Airborne Experiments Evis=E(h)+E Energy threshold Stratospheric 200 GeV Mountain altitude 2-4 TeV Particle physics observed in XREC - n, E, <r>, < E r> nch, EH, <rH>, < EH rH> - Energy and PT distributions - pseudorapidity distributions - dN/d=f() - correlations <PT>, dN/d (more or less completely) - direct interaction in the chambers - near direct interactions with localized origin

CERN Courier Octobre 1981 Début des expériences Octobre 1978 Une collision de 106 GeV (forte multiplicité, spikes dans la distribution de pseudo-rapidité)

Chambres à émulsion sur Concorde Impact d ’un photon de 200 TeV, l ’un des 211 g d ’une collision de 107 GeV. Evènement à émission coplanaire. 50ch sur A80 5000H 500 p 1PeV, 7 10 PeV 250 familles g , 10 PeV , 3 au LHC (100 PeV)

JF2af2 (Concorde) Xray film under 8 c.u. Lego plot with the 4 most energetic Gamma ’s

Jf2af2 (Concorde) 34 g ’s aligned about 50% of the visible energy

Very large tension for the diquark partners ?

3 most energetic clusters in JF2af2

One possible configuration External ’s and total <ER> factors indicate a common origin under 2.2km above the chamber Like in Strana, we need pt ‘ s > 10 GeV/c for the emission of 3 high energy hadrons generating A, Ap, B Threshold energy for valence quarks in alignment ~200 GeV in c.m.s.(proton of 1016 eV in Lab)

Most energetic events above LHC energy Tadjikistan Andromeda Fianit normal hadron and g ’s content reproduced with CORSIKA (1500 g ’s in Fianit, but few chances to reproduce the 10 PeV g ’s in the halo)

ANDROMEDA

TADJIKISTAN

Comment Coplanar emission , even if partly explained by fluctuations, needs more attention p-A and A-A collisions have to be considered, for peripheral collisions (RHIC results) to point out QGP signatures in spikes or very large Pt .Semi inclusive data consequences may be important New experiements(LHC energy, forward region) with emulsion bricks can be performed with air cargo liners and at mountain altitude

Xmax (g/cm2) and Nmax for p, Fe initiated showers

Propagation : coupure GZK Greisen, Zatsepin, Kuzmin Interaction des hadrons avec le fond de photons à 3K (CMB) Eseuil = 70 EeV protons Les sources doivent être proches !

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI Georgi Timofeevich Zatsepin (2006) Vadim Alekseyevich Kuzmin (2006)

Individual showers

Fonction Gaussienne hypergéométrique f(x) = Ne x s-a (1+x) s-b(1+d.x)-c Électrons Avec x = r / r0 et d = r0 / r1 f(x) = N x - (1+x)-(-)(1+.x)- Muons Avec x = r / r’0 et  = r’0 / r’1 À angle fixe, il va falloir ajuster les paramètres : a, b, c, r0, r1, , , , r’0 et r’1 Ne , N et “s” sont donnés par la simulation

Résultats des ajustements

Résultats des ajustements

Differential Primary Energy Spectrum of Cosmic Rays Isotropic distribution of sources

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI Measured: lateral distribution + direction (θ, φ) Density (600m, θ)  Density(600m, 0)  Energy AGASA conversion 600 600: 1 = 500 g/cm2 2 = 594 g/cm2 That conversion is energy/size independent

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI Conversion to ''vertical density'' example: Results of CORSIKA simulations show complicated and energy dependent form

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI Cascade theory and CORSIKA simulations results for the highest energies depend on interaction model, but suggest overestimation of energy at AGASA

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI From Bergman spectrum to AGASA spectrum using AGASA conversion Red points: AGASA energy spectrum Grey area: D.R.Bergman et al. (HiRes Collaboration) 29th ICRC, Pune, India, 2005 histograms: MC generated spectrum following Bergman approximately recalculated spectrum using AGASA conversion

Treatment of inclined EAS data from surface arrays and GZK prediction Jean Noël CAPDEVIELLE, F.COHEN, B.SZABELSKA, J.SZABELSKI How does the conversion to ''vertical density'' work ?

Treatment of inclined EAS data from surface arrays and GZK prediction The spectrum from surface array has to be corrected from the overestimation of the primary energy between 10°-35° in the last decade the amended spectrum of AGASA (ISVHECRI aug. 06) is progressing in this direction GZK after 4 decades is going to be confirmed by HIRES, AUGER, AGASA… The overestimation in AGASA data was mainly coming of the special properties of 3D Electromagnetic cascade near maximum

JEM-EUSO FoV EUSO ~ 1000 x AGASA ~ 30 x Auger EUSO (Instantaneous) ~ 5000 x AGASA                    ~ 150 x Auger JEM-EUSO tilt-mode AGASA

Principle of EUSO - first remote-sensing from space, opening a new window for the highest energy regime TPC-like natural chamber 1020 eV Cf: Ground-based arrays < 100 EUSO Scintillator array,(2)Fluorescence telescope array From College de France: better data now

Conclusions New chances for Proton &Gamma ray Astronomy at UHE from ISS with JEM-EUSO New results of LHC updating the simulation GZK tendancies confirmed after specific treatment of inclined EAS and particular procedure in the conversion of vertical signal to primary energy. Xmax behaviour and change in p-Air interaction above 3 EeV? Ratio of light at 500g/cm2 to 1100g/cm2 depends on mass (in favour of p composition at UHE for HIRES

Ne t G.COCCONI, 1961 De r

Cascade électromagnétique (NKG)

Signal (r) = C1 e+e- (r) + C2 (r) Signal dans Auger Simulation  densité de particules Détecteurs Auger  signal en Vertical Equivalent Muons (VEM) Signal (r) = C1 e+e- (r) + C2 (r) VEM Des simulations avec géant4 de la cuve d’Auger : C1 = 0,47 C2 = 0,9 – 1

Trans GZK AREA New scales Adequate Advanced Technologies Milesbornes to Quantum Gravity earliest approaches, EUSO and JEM-EUSO

Astronomie proton 1000 evts à répartir sur un certain nombre de sources éventuelles avec leur spectre respectif

LPM effect Maximum deeper in atmosphere for pure e.m. cascades trigger more difficult for registration of near vertical e.m. cascade with surface arrays

Total p-p Cross-Section ~ ln2 s Current models predictions: 90-130 mb Aim of TOTEM: ~1% accuracy COMPETE Collaboration fits all available hadronic data and predicts: LHC: [PRL 89 201801 (2002)]

Extrapolation des modèles d’interactions hadroniques Distribution de pseudo-rapidité Première interaction importante  donne les caractéristiques générales de la gerbe (Nmax, Xmax et profil latéral) Modèles théoriques sont ajustés sur les données expérimentales Or pas de données au-delà de 1,8 TeV dans le centre de masse (collisions pp)  extrapolation

Distribution de pseudo-rapidité Incertitudes Distribution de pseudo-rapidité Pythia 6.122 A Pythia 6.122 modele 4 Pythia 5.724 Atlas PHOJET 1.11sajet Herwig 5.9 Isajet 7.32 Prédictions pour le LHC à 14 TeV dans le centre de masse Multiplicité entre 70 (Isajet ) et 125 (Pythia 6.122A) Combien de particules ? Quelle énergie emportée par la particule leader

Violation du scaling de KNO (1000 collisions) 1020 eV