Fluid Mechanic By Dr. ASAWER A. ALWASITI.

Slides:



Advertisements
Similar presentations
BIO 208 FLUID FLOW OPERATIONS IN BIOPROCESSING [ ]
Advertisements

FLUID MECHANICS FOR CHEMICAL ENGINEERS. Introduction Fluid mechanics, a special branch of general mechanics, describes the laws of liquid and gas motion.
Chapter Four Fluid Dynamic
Density, ρ= mass/unitvolume –Slugs/ft3;kg/m3
Chapter Four Fluid Dynamic
FORCE Chapter 10 Text. Force A push or a pull in a certain direction SI Unit = Newton (N)
Fluid Properties and Units CEE 331 April 26, 2015 CEE 331 April 26, 2015 
Liquids and Gasses Matter that “Flows”
Lecture 2 Properties of Fluids Units and Dimensions.
II. Properties of Fluids. Contents 1. Definition of Fluids 2. Continuum Hypothesis 3. Density and Compressibility 4. Viscosity 5. Surface Tension 6. Vaporization.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Properties and Units CEE 331 June 15, 2015 CEE 331 June 15, 2015 
California State University, Chico
CE1501 CE 150 Fluid Mechanics G.A. Kallio Dept. of Mechanical Engineering, Mechatronic Engineering & Manufacturing Technology California State University,
Momentum flux across the sea surface
1 MFGT 242: Flow Analysis Chapter 3: Stress and Strain in Fluid Mechanics Professor Joe Greene CSU, CHICO.
Fluid Properties and Units CVEN 311 . Continuum ä All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion.
Chapter 14 Fluids Key contents Description of fluids
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Fluid Properties and Units CEE 331 July 12, 2015 
Chapter 9 Solids and Fluids. Solids Has definite volume Has definite volume Has definite shape Has definite shape Molecules are held in specific locations.
Fluid mechanics 3.1 – key points
Chapter:1 Fluids & Properties
Unit 3 - FLUID MECHANICS.
Chapter 1 – Fluid Properties
Elementary Mechanics of Fluids
Module 3 Fluid Flow. Lesson 20 CONTINUITY EQUATION DESCRIBE how the density of a fluid varies with temperature. DEFINE the term buoyancy. DESCRIBE the.
CEE 262A H YDRODYNAMICS Lecture 1* Introduction and properties of fluids *Adapted from notes by Prof. Stephen Monismith 1.
FLUID MECHANICS.
GAS LAWS. Properties of Gases  Composed of randomly scattered particles  No definite _________ or ___________  Spread out to fill the space of their.
IntoductionChee Introduction to Fluid Mechanics Fluid Mechanics is concerned with the behavior of fluids at rest and in motion Distinction between.
Fluid Mechanics Chapter 11. Expectations After this chapter, students will:  know what a fluid is  understand and use the physical quantities mass density.
Hydrostatics: Fluids at Rest. applying Newtonian principles to fluids hydrostatics—the study of stationary fluids in which all forces are in equilibrium.
Fluid Properties: Liquid or Gas
E Construction Surveying HYDRAULICS. Introduction surveyors –usually not be directly involved in the design of hydraulics systems –most certainly.
CE 230-Engineering Fluid Mechanics Week 1 Introduction.
Basic Fluid Properties and Governing Equations
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Introduction to Fluid Mechanics Engineering 1h Prof Bill Easson.
Chapter 14 Fluids What is a Fluid? A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the boundaries of any container.
Fundamentals of Fluid Mechanics, 5/E by Bruce Munson, Donald Young, and Theodore Okiishi Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.
Fluids. Introduction The 3 most common states of matter are: –Solid: fixed shape and size (fixed volume) –Liquid: takes the shape of the container and.
Chapter 4 The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting.
Mechanics of Fluids I.GNANASEELAN lecturer, department of mechanical Engineering, Parisutham institute of technology and science.
Chapter 1 INTRODUCTION AND OVERVIEW
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Chapter 14 Fluids.
What is Fluid????? A fluid may be liquid, vapour or gas. It has no permanent shape but takes up the shape of a containing vessel or channel or is shaped.
1. DEPARTMENT OF MECHANICAL ENGG IV-SEMESTER FLUID MECHANICS AND MACHINARY 2 CHAPTER NO. 1 PROPERTIES OF FLUID & FLUID PRESSURE.
Fluid Mechanics-I Spring 2010 Lecture # Course Outline  Introduction to Fluids and Fluid Properties  Fluid Statics  Integral Relations for fluid.
05:53 Fluid Mechanics Basic Concepts.
SARDAR VALLABHBHAI PATEL INSTITUTE OF TECHNOLOGY CIVIL DEPARTMENT.
FLUID MECHANICS.
Fluids and Elasticity Readings: Chapter 15.
Chapter 4 Fluid Mechanics Frank White
Chapter 11 Fluids.
VISCOSITY DEPARTMENT OF CIVIL ENGINEERING
GOVERNMENT ENGINEERING COLLEGE VALSAD
Lecture – 1 Ms. Thevasha Sathiyakumar
Chapter One Thermal-fluid sciences involve the transfer, transport, and conversion of energy, usually studied under the subcategories of thermodynamics,
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Static and Dynamic Chapter 1 : Introduction
GASES.
Fluid Mechanics Lectures 2nd year/1st semister/ /Al-Mustansiriyah unv
FLUID MECHANICS REVIEW
Introduction to Fluid Mechanics
Chapter 8 Introduction and Basic Fluid Properties
What is thermal sciences?
CHAPTER-ONE INTRODUCTION 1. Introduction Mechanics: The oldest physical science that deals with both stationary and moving bodies under the influence.
FLUID MECHANICS - Review
WHAT IS FLUID? Fluid is a substance that is capable of flowing. It has no definite shape of its own. It assumes the shape of its container. Both liquids.
Lecture Fluids.
Presentation transcript:

Fluid Mechanic By Dr. ASAWER A. ALWASITI

CONTENTS CHAPTER ONE: Introduction CHAPTER TWO: Dimensionless Analysis   CHAPTER ONE: Introduction CHAPTER TWO: Dimensionless Analysis CHAPTER THREE: Fluid Statics And Its Application CHAPTER FOUR: Fluid Dynamic CHAPTER FIVE : Flow-Measurement CHAPTER SIX: Non- Newtonian Fluid CHAPTER SEVEN: Compressible Fluid in Pipes CHAPTER EIGHT: Pumping of Liquids CHAPTER NINE: Flow in Porous Media

REFERENCES 1- E. Bobok, “Fluid Mechanics in Petroleum Engineering”, 1993   2- Streeter,V. ”Fluid Mechanic”,3rd edition, Mc-Graw Hill, 1962. 3- Holland, F.A. “Fluid Flow for Chemical Engineers” Arnold, (1980). 4- Frank M. White “Fluid Mechanics” 5th edition McGraw Hill. 5- Coulson, J.M. and J.F. Richardson, “Chemical Engineering”, Vol.I “ Fluid Flow, Heat Transfer, and Mass Transfer” 5th edition, (1998).

Chapter One Introduction Fluid : is a substance which deforms continuously under the influence of shearing forces or shear stress, it includes liquid and gases. A stress is defined as a force per unit area, acting on an infinitesimal surface element. It has both magnitude (force per unit area) and direction , and the direction is relative to the surface on which the stress acts.

Pressure is an example of a normal stress, and acts inward, toward the surface, and perpendicular to the surface. Shear stress is an example of a tangential stress, i.e. it acts along the surface, parallel to the surface. Friction due to fluid viscosity is the primary source of shear stresses in a fluid.

Solid and Fluid Distinction   -Molecular of solid are much closer together than fluid -Solid tries to return to its original shape due to large attraction between solid molecules -Fluids have very week inter-molecular attraction so that fluids flow under the applied force. Fluid Mechanic is a study of what will happen when a force applied on a fluid when its rest or moving.  

  Liquids differs greater resistance to compression change while gases are easily to compressed Liquid Gas Almost incompressible Forms a free surface area Easy to compressed Fills any vessel in which it placed

Fundamental Quantities of Fluid   Dimension: Generalization of “unit” telling us what kind of units are involved in a quantitative statement The primary quantities of fluid are: Quantity Dimension Units Mass M kg, gm, Ib Length L km, m, ft Time T s, hr Temperature θ C, K, cal Derived quantity Force (mass*acceleration) F=MLT-2 N, dyn, Ibf

System Unit System Mass Length Time Force System International (SI) kg French System gm cm dyn British Gravitational (BG) slug ft Ibf English Engineer (EE) Ibm pdl

Properties of Fluid Density The density of fluid is the mass per unit volume, its denoted as ρ with units kg/m3, Ib/ft3 Densities of fluids decrease with temperature and nearly constant (incompressible) for constant temperature while densities of gasses increase with pressure Specific Volume Its is the ratio of the volume of fluid to its mass, its reciprocal of density and denoted as υ(apsilon) with units of; m­3/kg, ft3/Ib

Properties of Fluid Specific Weight It is the ratio of weight of fluid to its volume, its denoted as sp.wt with units of, N/m2, Ibf/ft3 Specific Gravity It is a ratio of density of a fluid to the density of water, its denoted as sp.gr and its dimensionless Dynamic Viscosity It is fluid properties that offers resistance to the movement of one layer of fluid over another adjacent layer of the fluid, its denoted as μ(mu) and its common units are (kg/m.s), (g/cm.s), (lb/ft.s), (poise) (N.s/m2 ≡ Pa.m), (dyne.s/cm2). [poise ≡ g/cm.s ≡ dyne.s/cm2] [poise = 100 c.p] Its caused by intermolecular cohesion for liquid and molecular activity for gases Kinematic Viscosity It is a ratio of dynamic viscosity to the density of fluid, its denoted as γ(nu)and its unit are (m2/s), (cm2/s), (ft2/s), (stoke). [stoke ≡ cm2/s] [stoke = 100 c.stoke]

Properties of Fluid Surface Tension It is the liquid property that creates the capability of resisting tension at the interface between two different liquids or at the interface between liquid and gas. Its denoted as ( σ) (sigma) and its unit is N/m Cohesion : molecular attraction between the molecules of the same material. Forms an imaginary film capable of resisting tensile stress at the interface. Adhesion : molecular attraction between the molecules of the liquid and the solid surface which is in contact with the liquid.  

Properties of Fluid It increase with temperature Vapor Pressure When a liquid in a closed container ,small air space, a pressure will developed in the space as a result of vapor that is formed by escaping molecules. When equilibrium is reached so that the molecules leaving the surface is equal to the entering – vapor is said to be saturated and the pressure exerted by the vapor on the liquid surface is termed as vapor pressure. It increase with temperature Its called vapor pressure or vapor saturated pressure Its called partial pressure when its mixed with other gases The temperature at which the vapor pressure is equal to the atmospheric pressure is called the boiling point.  

Properties of Fluid Compressibility Compressibility (K) is defined as the relative change in fluid volume per unit external pressure change. It relates to variability of density 􀂄 Compressible - variable density 􀂄 Incompressible - constant density

In summary the quantities of fluid are Quantity Symbol Dimension Density ρ ML-3 Specific Volume υ L3M-1 Specific weight sp.wt FL-3= ML-2T-2 Specific gravity sp.gr - Dynamic viscosity μ FTL-2 = MT-1 L-1 Kinematic viscosity γ L2T-1 Surface tension σ FL-1= MT-2

Useful Information 1-The shear stress [symbol: τ (tau)] It is the force per unit surface area that resists the sliding of the fluid layers. The common units used of shear stress is (N/m2 ≡ Pa), (dyne/cm2), (lbf/ft2). 2- The pressure [symbol: P] It is the force per unit cross sectional area normal to the force direction. The common units used of shear stress is (N/m2 ≡ Pa), (dyne/cm2), (lbf/ft2) (atm) (bar) (Psi) (torr ≡ mmHg). The pressure difference between two points refers to (ΔP). The pressure could be expressed as liquid height (or head) (h) where, P=ghρ and ΔP=gΔhρ h: is the liquid height (or head), units (m), (cm), (ft). 3-The energy [symbol: E] Energy is defined as the capacity of a system to perform work or produce heat. There are many types of energy such as [Internal energy (U), Kinetic energy (K.E), Potential energy (P.E), Pressure energy (Prs.E), and others. The common units used for energy is (J ≡ N.m), (erg ≡ dyne.cm), (Btu), (lbf.ft) (cal). The energy could be expressed in relative quantity per unit mass or mole (J/kg or mol). The energy could be expressed in head quantity [(m) (cm) (ft)] by dividing the relative energy by acceleration of gravity.

Useful Information 4-The Power [symbol: P] It is the energy per unit time. The common units used for Power is (W ≡ J/s), (Btu/time), (lbf.ft/time) (cal/time), (hp).   5. The flow rate Volumetric flow rate [symbol: Q] It is the volume of fluid transferred per unit time. Q= Au where A: is the cross sectional area of flow normal to the flow direction. The common units used for volumetric flow is (m3/s), (cm3/s), (ft3/s). Mass flow rate [symbol: m&] It is the mass of fluid transferred per unit time. m&=Qρ=ρAu The common units used for volumetric flow is (kg/s), (g/s), (lb/s). Mass flux or (mass velocity) [symbol: G] It is the mass flow rate per unit area of flow, G=m&/A= ρu The common units used for mass flux is (kg/m2.s), (g/cm2.s), (lb/ft2.s).

Important Laws Law of conservation of mass “ The mass can neither be created nor destroyed, and it can not be created from nothing” Law of conservation of energy “ The energy can neither be created nor destroyed, though it can be transformed from one form into another” Newton’s Laws of Motion Newton has formulated three law of motion, which are the basic postulates or assumption on which the whole system of dynamics is based. Newton’s first laws of motion “Every body continues in its state of rest or of uniform motion in a straight line, unless it is acted upon by some external forces” Newton’s second laws of motion “The rate of change in momentum is directly proportional to the impressed force and takes place in the same direction in which the force acts”[momentum = mass × velocity] Newton’s third laws of motion “To every action, there is always an equal and opposite reaction”   First law of thermodynamics “Although energy assumes many forms, the total quantity of energy is constant, and when energy disappears in one form it appears simultaneously in other forms”

Fluid Classification Fluid can be classified in many ways as: Liquid and gases Its classified into gas and liquid according to the molecular structure. Continuum and Discrete In continuum fluid the individual molecular properties are negligible In discrete fluid each molecular treated separately Perfect (ideal) and real fluid Perfect or Ideal fluid It is one that is incompressible having no viscosity (μ = 0). Ideal fluid is only an imaginary fluid since all the fluids, which exist, have some viscosity. Real fluid A fluid, which possesses viscosity, is known as real fluid. All the fluids, an actual practice, are real fluids. Compressible and incompressible fluid In compressible fluid density changes with applied pressure In incompressible fluid density doesn’t changed by external pressure. Steady and Unsteady fluid flow Steady fluid: the properties of fluid independent on time Unsteady fluid: the properties of fluid varies with time Newtonian and non-Newtonian fluid Basing on the viscosity, the fluid can be classified to Newtonian and non-Newtonian fluid

Newtonian and non-Newtonian fluids Newton’s Law of Viscosity and Momentum Transfer Newtonian and non-Newtonian fluids

Examples 1- Convert the following: a. A discharge of 20ft³/min to lit/sec. b. A force of 10poundals to dynes. c. A pressure of 30lb/in² to gm/cm². d. A specific weight of 62.4lb/ft³ to kg/lit. 2- Determine the specific weight, density and specific gravity of a liquid that occupies a volume of 200lit., and weighs 178kg. Will this liquid float on the surface of an oil of specific gravity (0.8)? Provide results in SI units. 3- One liter of certain oil weighs 0.8 kg, calculate the specific weight, density, specific volume, and specific gravity of it. 4-Determine the specific gravity of a fluid having viscosity of 4.0 c.poice and kinematic viscosity of 3.6 c.stokes. 5- The velocity distribution of a viscous liquid (μ=0.9N.s/m²) over a fixed boundary is approximately given by: v = 0.98y - y2 in which y is the vertical distance in meters, measured from the boundary and v is the velocity in m/s.Determine the shear stress at the surface and at y=0.34m. Sketch the velocity and shear stress profiles for the given flow. 6- A fluid has a viscosity 1.5cp flows between two parallel plates with velocity 0.8m/s, if the distance between the plates is 0.1mm and the surface area of the plate 3*103cm2. Find the force required to maintain the speed.