Large scale control Hierarchical and pratial control The evaporation process in sugar production.

Slides:



Advertisements
Similar presentations
Closed-Loop Transfer Functions
Advertisements

Model-based PID tuning methods Two degree of freedom controllers
Tuning of PID controllers
Neural Simulation and Control.. Simulation Input/Output models Proces u(k) y(k+d) d(k) The NARMA model:
Control Architectures: Feed Forward, Feedback, Ratio, and Cascade
The control hierarchy based on “time scale separation” MPC (slower advanced and multivariable control) PID (fast “regulatory” control) PROCESS setpoints.
Exercise 3. Solutions From Fujio Kida, JGC Co. All cases
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
1 ChE / MET Apr 12 Process Linearity, Integral Windup, PID Controllers Linearity, Windup, & PID.
Forget Laplace Transforms….  Industrial process control involves a lot more than just Laplace transforms and loop tuning  Combination of both theory.
Sugar production control A case study for large scale industrial control.
Self-Optimizing Control of the HDA Process Outline of the presentation –Process description. –Self-optimizing control procedure. –Self-optimizing control.
CHE 185 – PROCESS CONTROL AND DYNAMICS
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
CHE 185 – PROCESS CONTROL AND DYNAMICS PID CONTROL APPLIED TO MIMO PROCESSES.
CHE 185 – PROCESS CONTROL AND DYNAMICS
Enhanced Single-Loop Control Strategies
Control of Multiple-Input, Multiple- Output (MIMO) Processes 18.1 Process Interactions and Control Loop Interactions 18.2 Pairing of Controlled and Manipulated.
Chapter 11 1 Closed-Loop Responses of Simple Control Systems In this section we consider the dynamic behavior of several elementary control problems for.
Process Control Instrumentation II
Multivariable systems Relative Gain Array (RGA)
Chapter 18 Control Case Studies. Control Systems Considered Temperature control for a heat exchanger Temperature control of a CSTR Composition control.
PID Controllers Applied to MIMO Processes
PID Tuning and Controllability Sigurd Skogestad NTNU, Trondheim, Norway.
Cascade, Ratio, and Feedforward Control
Controller Design Using CHEMCAD
GHGT-8 Self-Optimizing and Control Structure Design for a CO 2 Capturing Plant Mehdi Panahi, Mehdi Karimi, Sigurd Skogestad, Magne Hillestad, Hallvard.
ERT 210/4 Process Control & Dynamics
Control Loop Interaction
Lecture 15: Batch Distillation 1 Batch Distillation Total condenser Overhead vapor Boilup N 2 1 Distillation Reflux drum Rectifying section stages Stripping.
26 Nov 12 Process Linearity, Integral Windup,
DYNAMIC BEHAVIOR AND STABILITY OF CLOSED-LOOP CONTROL SYSTEMS
Course Review Part 3. Manual stability control Manual servo control.
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
Process Control Basics Distillation Control Course December 4-8, 2004.
3) OBJECTIVE FUNCTION & DISTURBANCES Objective function: Assuming product prices are the same, p D = p S = p B and (p-p F ) = p’, with F given and Q =
1 Outline Control structure design (plantwide control) A procedure for control structure design I Top Down Step 1: Degrees of freedom Step 2: Operational.
Abstract An important issue in control structure selection is plant ”stabilization”. The paper presents a way to select measurement combinations c as controlled.
Open-loop control system Closed-loop control system
1 Decentralized control Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway.
1 Decentralized control Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Tecnology (NTNU) Trondheim, Norway.
INSTRUMENTATION & CONTROL
1 II. Bottom-up Determine secondary controlled variables and structure (configuration) of control system (pairing) A good control configuration is insensitive.
1 ChE / MET Apr 12 Cascade Control: Ch 09 Ratio Control: Ch 10 Advanced control schemes.
Control of Distillation Column (精馏塔控制)
Control of Distillation Column (精馏塔控制) Dai Lian-Kui Shen Guo-jiang Institute of Industrial Control, Zhejiang University.
Multi-Variable Control
ERT 321 – Process Control & Dynamics Feedforward & Ratio Control Ms Anis Atikah Ahmad
UNIVERSITÁ DEGLI STUDI DI SALERNO
Outline Control structure design (plantwide control)
Implementation of a MPC on a deethanizer
ERT 321 – Process Control & Dynamics Feedforward & Ratio Control
John Edwards, P&I Design Ltd
Outline Control structure design (plantwide control)
Introduction to Crude Oil Distillation
Decentralized control
Process Control Engineering
Enhanced Single-Loop Control Strategies
Example regulatory control: Distillation
Plantwide control: Towards a systematic procedure
PLANTWIDE CONTROL Sigurd Skogestad Department of Chemical Engineering
Implementation of a MPC on a deethanizer
Distillation Column – External Balance
Decentralized control
Example regulatory control: Distillation
Plant-wide Control- Part2
Example regulatory control: Distillation
Example regulatory control: Distillation
Example “stabilizing” control: Distillation
Outline Control structure design (plantwide control)
Presentation transcript:

Large scale control Hierarchical and pratial control The evaporation process in sugar production

Partial control controlling a subset of the outputs y for which there is a control objective y 1 - (temporary) uncontrolled outputs, can be controlled at some higher level. y 2 – (locally) measured and controlled output The inputs u is diveded u 2 –inputs used for controlling y 2 u 1 – remaining inputs which may be used for controlling y 1

Applications of partial control Sequential control of decentralized controllers Sequential design of convensional cascade control True partial control Indirect partial control Mes. y 1 Control objec. for y 2 Decent. controlyes cascadeyesno partialnoyes indirectno

Transfer function for y1 and y2 y= Gu y 1 = G 11 u 1 +G 12 u 2 +Gd 1 d y 2 = G 21 u 1 + G 22 u 2 +Gd 2 d Feedback control u 2 = K 2 (r 2 -y 2 ) =>u 2 and y 2 can be eliminated y 1 =(G 11 -G 12 K 2 (I+G 22 K 2 )-1 u 1 + (Gd 1 -G 21 K 2 (I+G 22 K 2 )-1 Gd 2 )d+ (G 12 K 2 (I+G 22 K 2 )-1 r 2

Control objectives for y 2 Fast control of y2 => y2 =r2 By substitution P u is the effect of u 1 on y 2 P d is the partial disturbance gain P r is reference gain

Hierarchical decomposition by sequential design First implement a local lower level control or an inner loop for controlling the output y 2 Objectives: Simpel or on-line tuning of lower-layer controllers Longer sampling intervals for hiegher layers Simpel models for design of higher-layer control systems To stabilize lower layers such that manual control is possible

Selecting u 2 and y 2 The lower layer must quickly implement the setpoints computed by the higher layers control of y 2 using u 2 schould provide local disturbance rejection control of y 2 using u 2 schouldnot impose unnecessary control limitations on the remaining control problem

Distilation column u=[L V D B V T ] T L = reflux V = boilup D= destilate B=bottom flow V T = overhead vapour y= [y d x b M D M B p] T y D = top composition x B = bottom composition M D =condenser holdup M B = reboiler holdup p= pressure 5 X 5 control problem

Stabilizing the distilation column Locally measured and controlled outputs are loops for level and pressure, they interacts weakly y 2 =[M D M B p] T The levels(tanks) has an inlet and two outlets ther are several possible inputs. One can be: u 2 = [D B V T ] T Three SISO loops can be designed

Composition control Teporary uncontrolled inputs y 1 = [y D x B ] T u 1 =[L V ] T Y D can be controlled using L X B can be controlled using V The choise of u 2 made u 1 usefull for controlling y 1

”True” Partial control y 1 is left uncontrolled when control of y 2 indirectly gives acceptable control of y 1. y 1 must be left uncontrolled if the effects of all disturbances on y 1 are less than 1 in magnitude for all frequencies. y 1 must be left uncontrolled if the effects of all reference changes in the controlled outputs (y 2 ) on y 1, are less than 1 in magnitude for all frequencies.

y= Guy 1 = G 11 u 1 +G 12 u 2 +Gd 1 d y 2 = G 21 u 1 + G 22 u 2 +Gd 2 d The effect of a disturbance d k on an uncontrolled output y i is Select the unused input u j such that j’th row in G -1 G d has small elements = keep the input constant if its desired change is small. Select the uncontrolled output y i an unused u j such that the ji’th element in G -1 is large = Keep an output uncontrolled if it is insentive to changes in the unused input with the other outputs controlled.

Simpel distilation column 2 X 2 control problem u=[L V ] T L = reflux V = boilup y= [y d x b ] T y D = top composition x B = bottom composition Disturbances d=[F z F ] F= feed flowrate z F =feed composition

Control problems in the destilation proces Difficult to control the two outputs idenpendently due to strong interactions y 1 is left uncontrolled To improve performance of y 1 (y D composition), u 1 (reflux L)is adjusted by a feedforward from the disturbance – not from y 1 measurements.

Distillation matrices Eksample: At steady state we have The row elements in G -1 G d are similar i magnitude as are the elements in G -1 => The values of P d are quite similar In cases the elements in Pd is much smaller than i Gd => control of one output reduces the effect of the distrubance of the uncontrolled output.

Effect of disturbance d 1 on output y 1 Control y 2 using u 2 with y 1 uncontrolled and worst disturbance d 1 Curve 1:open loop disturbance gain Curve 2: partial disturbance gain Low frequency gains > 1

Reduction of disturbance effect on y1 using feed forward Measure d1 (F) and adjust u1 (L) as a ratio controller curve 3 Unsecure measurements (20%) reduce the effect curve 4 The static FF reacts to fast – a filter is introduced Curve 5 Reduction of the disturbance at all frequences