10.1 Parabolas.

Slides:



Advertisements
Similar presentations
4.4 Conics Recognize the equations and graph the four basic conics: parabolas, circles, ellipse, and hyperbolas. Write the equation and find the focus.
Advertisements

HYPERBOLAS The equation of a hyperbola is almost exactly that of an ellipse. The only change that occurs is there is a minus sign between the terms. ALSO,
Section 11.6 – Conic Sections
10.3 Ellipses JMerrill, General Second Degree Equation Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0.
W RITING AND G RAPHING E QUATIONS OF C ONICS GRAPHS OF RATIONAL FUNCTIONS STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS In the following equations the.
Conic Sections MAT 182 Chapter 11
10.1 Conics and Calculus. Each conic section (or simply conic) can be described as the intersection of a plane and a double-napped cone. CircleParabolaEllipse.
Conic Sections Parabola Ellipse Hyperbola
Conics: Standard Form Pre-Calculus Conics part 1.
Recall that the equations for a parabola are given by ...
College Algebra Fifth Edition
Conic Sections Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Conic Sections Conic sections are plane figures formed.
Copyright © Cengage Learning. All rights reserved. Conic Sections.
C.P. Algebra II The Conic Sections Index The Conics The Conics Translations Completing the Square Completing the Square Classifying Conics Classifying.
Advanced Geometry Conic Sections Lesson 4
Hyperbolas Section st Definiton A hyperbola is a conic section formed when a plane intersects both cones.
9.1 Conic Sections Conic sections – curves that result from the intersection of a right circular cone and a plane. Circle Ellipse Parabola Hyperbola.
Unit #4 Conics. An ellipse is the set of all points in a plane whose distances from two fixed points in the plane, the foci, is constant. Major Axis Minor.
What is the standard form of a parabola who has a focus of ( 1,5) and a directrix of y=11.
Review Day! Hyperbolas, Parabolas, and Conics. What conic is represented by this definition: The set of all points in a plane such that the difference.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
50 Miscellaneous Parabolas Hyperbolas Ellipses Circles
Chapter 10.5 Conic Sections. Def: The equation of a conic section is given by: Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 Where: A, B, C, D, E and F are not.
Conics can be formed by the intersection
Ax 2 + Bxy + Cy 2 + Dx + Ey + F=0 General Equation of a Conic Section:
Algebra II Honors Problem of the Day Homework: p , 9, 13, 15, odds and worksheet Paper folding activity is the problem of the day.
Jeopardy CirclesParabolasEllipsesHyperbolasVocabulary Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy Source:
Conic Sections Advanced Geometry Conic Sections Lesson 2.
Conic Sections Curves with second degree Equations.
10.5 CONIC SECTIONS Spring 2010 Math 2644 Ayona Chatterjee.
W RITING AND G RAPHING E QUATIONS OF C ONICS GRAPHS OF RATIONAL FUNCTIONS STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS In the following equations the.
Conic Sections.
Conics This presentation was written by Rebecca Hoffman.
Use the Pythagorean theorem to find the length of the missing side. 1)a = 12,b = 9 2)a = 5,c = 13 Find the mean of the two numbers. 3)18 and 34 4)18 and.
Hyperbolas. Hyperbola: a set of all points (x, y) the difference of whose distances from two distinct fixed points (foci) is a positive constant. Similar.
Conic Sections There are 4 types of Conics which we will investigate: 1.Circles 2.Parabolas 3.Ellipses 4.Hyperbolas.
Horizontal Plane? Diagonal Plane (less steep than the cone) Diagonal Plane (parallel to the slope of the cone) Vertical Plane? (steeper than the slope.
Distance The distance between any two points P and Q is written PQ. Find PQ if P is (9, 1) and Q is (2, -1)
Hyperbolas Objective: graph hyperbolas from standard form.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics Name the vertex and the distance from the vertex to the focus of the equation (y+4) 2 = -16(x-1) Question:
10.1 Conics and Calculus.
An Ellipse is the set of all points P in a plane such that the sum of the distances from P and two fixed points, called the foci, is constant. 1. Write.
STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS
STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Analyzing Conic Sections
Chapter 6 Analytic Geometry. Chapter 6 Analytic Geometry.
Translating Conic Sections
6.2 Equations of Circles +9+4 Completing the square when a=1
9.6A Graphing Conics Algebra II.
Vertices {image} , Foci {image} Vertices (0, 0), Foci {image}
Ellipses & Hyperbolas.
Eccentricity Notes.
This presentation was written by Rebecca Hoffman
Review Circles: 1. Find the center and radius of the circle.
9.5A Graph Hyperbolas Algebra II.
7.6 Conics
10.2 Parabolas.
Analyzing Conic Sections
Section 11.6 – Conic Sections
Conics Review.
STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS
Chapter 10 Conic Sections.
10.3 Ellipses.
10.4 Hyperbolas.
Chapter 7 Analyzing Conic Sections
Presentation transcript:

10.1 Parabolas

10.1 Parabolas A parabola is the set of all points (x,y) that are equidistant from a fixed line (directrix) and a fixed point (focus) not on the line. Focus (h, k + p) Vertex (h,k) Directrix y = k - p

Standard Equation of a Parabola (x - h)2 = 4p(y - k) Vertical axis Opens up (p is +) or down (p is -) (y - k)2 = 4p(x - h) Horizontal axis Opens right (p is +) or left (p is -) p is the distance from the center to the focus point.

left Ex. Find the vertex, focus, and directrix of the parabola and sketch its graph. y2 + 4y + 8x - 12 = 0 Now complete the square. y2 + 4y = -8x + 12 y2 + 4y + 4 = -8x + 12 + 4 (y + 2)2 = -8x + 16 Write down the vertex and plot it. Then find p. (y + 2)2 = -8(x - 2) 4p = -8 p = -2 What does the negative p mean? left

Directrix x = 4 V(2,-2) F(0,-2)

Right, since the axis is vertical, we will be using Ex. Find the standard form of the equation of the parabola with vertex (2,1) and focus (2,4). First, plot the two points. Which equation will we be using? Vert. or Horz. axis Right, since the axis is vertical, we will be using (x - h)2 = 4p(y - k) What is p? p = 3 Now write down the equation. (x - 2)2 = 12(y - 1)

Ellipses

Ellipses Center point (h,k) Focus point a b F F c V V a Minor axis Major axis An ellipse is the set of all points (x,y), the sum of whose distances from two distinct points (foci) is constant. a2 = b2 + c2

Standard Equation of an Ellipse Horz. Major axis Vert. Major axis (h,k) is the center point. The foci lie on the major axis, c units from the center. c is found by c2 = a2 - b2 Major axis has length 2a and minor axis has length 2b.

Sketch and find the Vertices, Foci, and Center point. x2 + 4y2 + 6x - 8y + 9 = 0 First, write the equation in standard form. (x2 + 6x + ) + 4(y2 - 2y + ) = -9 (x2 + 6x + 9) + 4(y2 - 2y + 1) = -9 + 9 + 4 (x + 3)2 + 4(y - 1)2 = 4 C (-3,1) V (-1,1) (-5,1)

c2 = a2 - b2 C (-3,1) c2 = 4 - 1 V (-1,1) (-5,1) Foci are:

Eccentricity e of an ellipse measures the ovalness of the ellipse. e = c/a In the last example, what is the eccentricity? The smaller or closer to 0 that the eccentricity is, the more the ellipse looks like a circle. The closer to 1 the eccentricity is, the more elongated it is.

Find the center, vertices, and foci of the ellipse given by 4x2 + y2 - 8x + 4y - 8=0 First, put this equation in standard form. 4(x2 - 2x + 1) + ( y2 + 4y + 4) = 8 + 4 + 4 4(x - 1)2 + (y + 2)2 = 16 C( , ) a = b = c = Vertices ( , ) ( , ) Foci ( , ) ( , ) e = Sketch it.

Hyperbolas

The standard form with center (h,k) is Note: a is under the positive term. It is not necessarily true that a is bigger than b.

Let’s take a look at the first hyperbola form. V(h-a,k) c V(h+a,k) b b C(h,k) F(h-c,k) F(h+c,k) a c is the distance from the center to the foci. Note: If c is the distance from the center to F, and all radii of a circle = , then the hyp. of the right triangle is also c. Therefore, to find c, a2 + b2 = c2

Sketch the hyperbola whose equation is 4x2 - y2 = 16. First divide by 16. Write down a, b, c and the center pt. a = 2 b = 4 Note: a is always under the (+) term. C(0,0) Now find c. Let’s sketch the hyperbola.

F F V V Now, we need to find the equations of the asymptotes. What are their slopes and one point that is on both lines?

Sketch the graph of 4x2 - 3y2 + 8x +16 = 0 4(x2 + 2x ) - 3y2 = -16 +1 + 4 4(x + 1)2 - 3y2 = -12 Now, divide by -12 and switch the x and y terms. C( , ) a = b = c = e = Sketch

V( , ) ( , ) F( , ) ( , ) F V V Eq. of asymptotes. F

Classifying a conic from its general equation. Ax2 + Cy2 + Dx + Ey + F = 0 If: A = C AC = 0 , A = 0 or C = 0, but not both AC > 0, AC < 0 Both A and C = 0