Support Vector Machines

Slides:



Advertisements
Similar presentations
Support Vector Machine & Its Applications
Advertisements

Introduction to Support Vector Machines (SVM)
Lecture 9 Support Vector Machines
ECG Signal processing (2)
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
PrasadL18SVM1 Support Vector Machines Adapted from Lectures by Raymond Mooney (UT Austin)
Support Vector Machine & Its Applications Abhishek Sharma Dept. of EEE BIT Mesra Aug 16, 2010 Course: Neural Network Professor: Dr. B.M. Karan Semester.
S UPPORT V ECTOR M ACHINES Jianping Fan Dept of Computer Science UNC-Charlotte.
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
SVM - Support Vector Machines A new classification method for both linear and nonlinear data It uses a nonlinear mapping to transform the original training.
An Introduction of Support Vector Machine
Classification / Regression Support Vector Machines
Linear Classifiers/SVMs
An Introduction of Support Vector Machine
Support Vector Machines
1 Lecture 5 Support Vector Machines Large-margin linear classifier Non-separable case The Kernel trick.
SVM—Support Vector Machines
Support Vector Machine
Support Vector Machines (and Kernel Methods in general)
Support Vector Machines (SVMs) Chapter 5 (Duda et al.)
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class.
Support Vector Machines
CS 4700: Foundations of Artificial Intelligence
Lecture 10: Support Vector Machines
Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, a Machine Learning.
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
An Introduction to Support Vector Machines Martin Law.
Ch. Eick: Support Vector Machines: The Main Ideas Reading Material Support Vector Machines: 1.Textbook 2. First 3 columns of Smola/Schönkopf article on.
Support Vector Machines Piyush Kumar. Perceptrons revisited Class 1 : (+1) Class 2 : (-1) Is this unique?
Support Vector Machine & Image Classification Applications
CS 8751 ML & KDDSupport Vector Machines1 Support Vector Machines (SVMs) Learning mechanism based on linear programming Chooses a separating plane based.
计算机学院 计算感知 Support Vector Machines. 2 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Perceptron Revisited: Linear Separators Binary classification.
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
An Introduction to Support Vector Machines (M. Law)
Kernels Usman Roshan CS 675 Machine Learning. Feature space representation Consider two classes shown below Data cannot be separated by a hyperplane.
CS 478 – Tools for Machine Learning and Data Mining SVM.
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
Machine Learning Lecture 7: SVM Moshe Koppel Slides adapted from Andrew Moore Copyright © 2001, 2003, Andrew W. Moore.
SVM – Support Vector Machines Presented By: Bella Specktor.
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
Support vector machine LING 572 Fei Xia Week 8: 2/23/2010 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A 1.
Support Vector Machines. Notation Assume a binary classification problem. –Instances are represented by vector x   n. –Training examples: x = (x 1,
Text Classification using Support Vector Machine Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata.
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
Support Vector Machine: An Introduction. (C) by Yu Hen Hu 2 Linear Hyper-plane Classifier For x in the side of o : w T x + b  0; d = +1; For.
An Introduction of Support Vector Machine In part from of Jinwei Gu.
Roughly overview of Support vector machines Reference: 1.Support vector machines and machine learning on documents. Christopher D. Manning, Prabhakar Raghavan.
A Brief Introduction to Support Vector Machine (SVM) Most slides were from Prof. A. W. Moore, School of Computer Science, Carnegie Mellon University.
Support Vector Machines Reading: Textbook, Chapter 5 Ben-Hur and Weston, A User’s Guide to Support Vector Machines (linked from class web page)
Support Vector Machines (SVMs) Chapter 5 (Duda et al.) CS479/679 Pattern Recognition Dr. George Bebis.
Support Vector Machine Slides from Andrew Moore and Mingyue Tan.
Support Vector Machines
Support Vector Machine
Support Vector Machines
Support Vector Machines
An Introduction to Support Vector Machines
Kernels Usman Roshan.
Support Vector Machines
Support Vector Machines Introduction to Data Mining, 2nd Edition by
Support Vector Machines
Statistical Learning Dong Liu Dept. EEIS, USTC.
CSSE463: Image Recognition Day 14
Support Vector Machines
Usman Roshan CS 675 Machine Learning
Support Vector Machine
SVMs for Document Ranking
Support Vector Machines Kernels
Presentation transcript:

Support Vector Machines CS 6243 Machine Learning Modified from the slides by Dr. Raymond J. Mooney http://www.cs.utexas.edu/~mooney/cs391L/ And by Dr. Andrew W. Moore http://www.cs.cmu.edu/~awm/tutorials

Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: wTx + b > 0 wTx + b = 0 Classification function: f(x) = sign(wTx + b) wTx + b < 0

Which of the linear separators is optimal? Need to find a decision boundary: ax + by − c = 0 Lots of possible solutions for a, b, c. Some methods find a separating hyperplane, but not the optimal one E.g., perceptron Support Vector Machine (SVM) finds an optimal solution.

Maximum Margin Classification SVMs maximize the margin around the separating hyperplane. A.k.a. large margin classifiers Efficient algorithms to find optimal solution Elegantly extensions to handle non-linearly-separable data Currently widely seen as one of the best classification methods. wTx + b = 0 wTx + b > ρ/2 ρ/2 Classification function: f(x) = sign(wTx + b) ρ/2 wTx + b < -ρ/2

Why Maximum Margin? Intuitively this feels safest. If we’ve made a small error in the location of the boundary (it’s been jolted in its perpendicular direction) this gives us least chance of causing a misclassification. LOOCV is easy since the model is immune to removal of any non-support-vector datapoints. There’s some theory (using VC dimension) that is related to (but not the same as) the proposition that this is a good thing. Empirically it works very very well.

Classification Margin Distance from example xi to the separator is Examples closest to the hyperplane are support vectors. Margin ρ of the separator is the distance between support vectors. ρ Derivation of finding r: Dotted line x’−x is perpendicular to decision boundary so parallel to w. Unit vector is w/|w|, so line is rw/|w|. x’ = x – yrw/|w|. x’ satisfies wTx’+b = 0. So wT(x –yrw/|w|) + b = 0 Recall that |w| = sqrt(wTw). So, solving for r gives: r = y(wTx + b)/|w| x r x′

Linear SVM Mathematically Let training set {(xi, yi)}i=1..n, xiRd, yi  {-1, 1} be separated by a hyperplane with margin ρ. Then for each training example (xi, yi): For every support vector xs the above inequality is an equality. After rescaling w and b by ρ/2 in the equality, we obtain that distance between each xs and the hyperplane is Then the margin can be expressed through (rescaled) w and b as: wTxi + b ≤ - ρ/2 if yi = -1 wTxi + b ≥ ρ/2 if yi = 1  yi(wTxi + b) ≥ ρ/2

Linear SVMs Mathematically (cont.) Then we can formulate the quadratic optimization problem: Which can be reformulated as: Find w and b such that is maximized and for all (xi, yi), i=1..n : yi(wTxi + b) ≥ 1 Find w and b such that Φ(w) = ||w||2=wTw is minimized and for all (xi, yi), i=1..n : yi (wTxi + b) ≥ 1

Solving the Optimization Problem Need to optimize a quadratic function subject to linear constraints. Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist. The solution involves constructing a dual problem where a Lagrange multiplier αi is associated with every inequality constraint in the primal (original) problem: Find w and b such that Φ(w) =wTw is minimized and for all (xi, yi), i=1..n : yi (wTxi + b) ≥ 1 Find α1…αn such that Q(α) =Σαi - ½ΣΣαiαjyiyjxiTxj is maximized and (1) Σαiyi = 0 (2) αi ≥ 0 for all αi

The Optimization Problem Solution Given a solution α1…αn to the dual problem, solution to the primal is: Each non-zero αi indicates that corresponding xi is a support vector. Then the classifying function is (note that we don’t need w explicitly): Notice that it relies on an inner product between the test point x and the support vectors xi – we will return to this later. Also keep in mind that solving the optimization problem involved computing the inner products xiTxj between all training points. w =Σαiyixi b = yk - Σαiyixi Txk for any αk > 0 f(x) = ΣαiyixiTx + b

Soft Margin Classification What if the training set is not linearly separable? Slack variables ξi can be added to allow misclassification of difficult or noisy examples, resulting margin called soft. ξj ξi

Soft Margin Classification Mathematically The old formulation: Modified formulation incorporates slack variables: Parameter C can be viewed as a way to control overfitting: it “trades off” the relative importance of maximizing the margin and fitting the training data. Find w and b such that Φ(w) =wTw is minimized and for all (xi ,yi), i=1..n : yi (wTxi + b) ≥ 1 Find w and b such that Φ(w) =wTw + CΣξi is minimized and for all (xi ,yi), i=1..n : yi (wTxi + b) ≥ 1 – ξi, , ξi ≥ 0

Soft Margin Classification – Solution Dual problem is identical to separable case (would not be identical if the 2-norm penalty for slack variables CΣξi2 was used in primal objective, we would need additional Lagrange multipliers for slack variables): Again, xi with non-zero αi will be support vectors. Solution to the dual problem is: Find α1…αN such that Q(α) =Σαi - ½ΣΣαiαjyiyjxiTxj is maximized and (1) Σαiyi = 0 (2) 0 ≤ αi ≤ C for all αi Again, we don’t need to compute w explicitly for classification: w =Σαiyixi b= yk(1- ξk) - ΣαiyixiTxk for any k s.t. αk>0 f(x) = ΣαiyixiTx + b

*Theoretical Justification for Maximum Margins Vapnik has proved the following: The class of optimal linear separators has VC dimension h bounded from above as where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m0 is the dimensionality. Intuitively, this implies that regardless of dimensionality m0 we can minimize the VC dimension by maximizing the margin ρ. Thus, complexity of the classifier is kept small regardless of dimensionality.

Linear SVMs: Overview The classifier is a separating hyperplane. Most “important” training points are support vectors; they define the hyperplane. Quadratic optimization algorithms can identify which training points xi are support vectors with non-zero Lagrangian multipliers αi. Both in the dual formulation of the problem and in the solution training points appear only inside inner products: Find α1…αN such that Q(α) =Σαi - ½ΣΣαiαjyiyjxiTxj is maximized and (1) Σαiyi = 0 (2) 0 ≤ αi ≤ C for all αi f(x) = ΣαiyixiTx + b

Non-linear SVMs Datasets that are linearly separable with some noise work out great: But what are we going to do if the dataset is just too hard? How about… mapping data to a higher-dimensional space: x x x2 x

Non-linear SVMs: Feature spaces General idea: the original feature space can be mapped to some higher-dimensional feature space where the training set is separable: x2 x22 Φ: x → φ(x) x1 x12

Quadratic Basis Functions Constant Term Quadratic Basis Functions Linear Terms Number of terms (assuming d input dimensions) = (d+2)-choose-2 = (d+2)(d+1)/2 = (as near as makes no difference) d2/2 Pure Quadratic Terms Potential problems with high-dimensional feature space: Overfitting Separation in high dimensional space is trivial High computational cost Quadratic Cross-Terms

Quadratic Dot Products + Quadratic Dot Products + + O(d2) to compute

Quadratic Dot Products

Quadratic Dot Products They’re the same! And this is only O(d) to compute!

Higher Order Polynomials R: number of instances m: number of attributes Poly-nomial f(x) Cost to build Qkl matrix traditionally Cost if 100 inputs f(a).f(b) Cost to build Qkl matrix sneakily Quadratic All d2/2 terms up to degree 2 m2 R2 /4 2,500 R2 (a.b+1)2 m R2 / 2 50 R2 Cubic All d3/6 terms up to degree 3 m3 R2 /12 83,000 R2 (a.b+1)3 Quartic All d4/24 terms up to degree 4 m4 R2 /48 1,960,000 R2 (a.b+1)4

The “Kernel Trick” The linear classifier relies on inner product between vectors K(xi,xj)=xiTxj If every datapoint is mapped into high-dimensional space via some transformation Φ: x → φ(x), the inner product becomes: K(xi,xj)= φ(xi) Tφ(xj) A kernel function is a function that is eqiuvalent to an inner product in some feature space. Example: 2-dimensional vectors x=[x1 x2]; let K(xi,xj)=(1 + xiTxj)2, Need to show that K(xi,xj)= φ(xi) Tφ(xj): K(xi,xj)=(1 + xiTxj)2,= 1+ xi12xj12 + 2 xi1xj1 xi2xj2+ xi22xj22 + 2xi1xj1 + 2xi2xj2= = [1 xi12 √2 xi1xi2 xi22 √2xi1 √2xi2]T [1 xj12 √2 xj1xj2 xj22 √2xj1 √2xj2] = = φ(xi) Tφ(xj), where φ(x) = [1 x12 √2 x1x2 x22 √2x1 √2x2] Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to compute each φ(x) explicitly).

Examples of Kernel Functions Linear: K(xi,xj)= xiTxj Mapping Φ: x → φ(x), where φ(x) is x itself Polynomial of power p: K(xi,xj)= (1+ xiTxj)p Mapping Φ: x → φ(x), where φ(x) has dimensions Gaussian (radial-basis function): K(xi,xj) = Mapping Φ: x → φ(x), where φ(x) is infinite-dimensional: every point is mapped to a function (a Gaussian); combination of functions for support vectors is the separator. Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto), but linear separators in it correspond to non-linear separators in original space.

Non-linear SVMs Mathematically Dual problem formulation: The solution is: Optimization techniques for finding αi’s remain the same! Find α1…αn such that Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and (1) Σαiyi = 0 (2) αi ≥ 0 for all αi f(x) = ΣαiyiK(xi, xj)+ b

SVM applications SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s. SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data. SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data. SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. ’97], principal component analysis [Schölkopf et al. ’99], etc. Most popular optimization algorithms for SVMs use decomposition to hill-climb over a subset of αi’s at a time, e.g. SMO [Platt ’99] and [Joachims ’99] Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

SVM software and resources LibSVM (C++) SVMLight (C) As well as complete machine learning toolboxes that include SVMs: Torch (C++) Spider (Matlab) Weka (Java) Useful websites www.kernel-machines.org svms.org