Introduction 2 1: Introduction.

Slides:



Advertisements
Similar presentations
CS 381 Introduction to computer networks Lecture 2 1/29/2015.
Advertisements

James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
Aleksandar, Accounts have been created for any students in EECS 340 who did not already have one. Physical access to the labs has also been granted. If.
Introduction© Dr. Ayman Abdel-Hamid, CS4254 Spring CS4254 Computer Network Architecture and Programming Dr. Ayman A. Abdel-Hamid Computer Science.
Introduction1-1 Introduction to Computer Networks Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
CSE401N1 CSE401N Computer Networks Lecture-2 Network Structure[KR ] S. M. Hasibul Haque Dept. of CSE BUET.
Introduction1-1 Communication Systems Lecturer Dr. Marina Kopeetsky Lecture 1: Introduction Computer Networking: A Top Down Approach Featuring the Internet,
Lecture 1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
Lecture Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
Winter 2008Introduction1 What’s a Network: Key Features  Providing certain services  transport goods, mail, information or data  Shared resources 
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Lecture Internet Overview: roadmap 1.1 What is the Internet? (A simple overview last week) Today, A closer look at the Internet structure! 1.2 Network.
1 Day 01 - The Internet. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
1: Introduction1 Part I: Introduction Chapter goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture 1 Overview: roadmap 1.1 What is computer network? the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network.
Introduction1-1 Chapter 1: Introduction Our goal:  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive.
Introduction1-1 CS 325 Computer Networks Sami Rollins Fall 2005.
What’s the Internet: “nuts and bolts” view
1-1 CS 456 – Computer Networks □ Instructor: Ian Goldberg □ Classes: Tuesday and Thursday 8:30 – 9:50am MC 4063 (section.
1: Introduction1 Part I: Introduction Goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
CS 3830 Day 2 Introduction 1-1. Announcements  Program 1 posted on the course web  Project folder must be in 1DropBox on S drive by: 9/14 at 3pm  Must.
1: Introduction1a-1 Part I: Introduction Chapter goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m.
Computer Networking Introduction, Part I. Lecture #1: Part I: Introduction Chapter goal: get context, overview, “feel” of networking.
CS448 Computer Networking Chapter 1 Introduction to Computer Networks Instructor: Li Ma Office: NBC 126 Phone: (713)
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
Introduction 1-1 Chapter 1 Part 2 Network Core These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
Introduction1-1 Course Code:EE/TE533 Instructor: Muddathir Qamar.
CS 3214 Computer Systems Godmar Back Lecture 23. Announcements Project 5 due Dec 8 Exercise 10 handed out Exercise 11 coming before Thanksgiving CS 3214.
Introduction Switches and Access. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 5 rd edition. Jim.
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Ch 1. Computer Networks and the Internet Myungchul Kim
1 End-user Protocols, Services and QoS. 2 Layering: logical communication application transport network link physical application transport network link.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 1 Omar Meqdadi Department of Computer Science and Software Engineering.
1 Network Core and Network Edge By Muhammad Hanif To BS IT 4 th Semester.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Introduction1-1 Computer Network (  Instructor  Ai-Chun Pang 逄愛君, m Office Number: 417  Textbook.
CSE 413: Computer Network Circuit Switching and Packet Switching Networks Md. Kamrul Hasan
Chapter 1, slide: 1 Summer 2010 CS 372 Introduction to Computer Networks* Monday, June 21, 2010 School of Electrical Engineering and Computer Science Oregon.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 2 Omar Meqdadi Department of Computer Science and Software Engineering.
1: Introduction1 Internet Services and Protocols Adapted from “Computer Networking: A Top Down Approach Featuring the Internet” Kurose and Ross, Addison.
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
Administrative Things
CS 5565 Network Architecture and Protocols
Graciela Perera Introduction Graciela Perera
CS 3214 Computer Systems Networking.
Day 01 - The Internet.
Part 0: Networking Review
Slides taken from: Computer Networking by Kurose and Ross
Chapter 1: Introduction
CS 3214 Computer Systems Lecture 21 Godmar Back.
A Taxonomy of Communication Networks
Part I: Introduction Chapter goal:
An Aleksandar,   Accounts have been created for any students in EECS 340 who did not already have one.  Physical access to the labs has.
CS 3214 Computer Systems Networking.
CS 5565 Network Architecture and Protocols
Chapter 1: Introduction
Part I: Introduction Chapter goal:
Network Core and QoS.
Part I: Introduction Chapter goal:
Part I: Introduction Overview: what’s the Internet what’s a protocol?
Network Core and QoS.
Comp 410 AOS Packet Switching
Presentation transcript:

Introduction 2 1: Introduction

What’s a protocol? human protocols: “what’s the time?” “I have a question” introductions … specific msgs sent … specific actions taken when msgs received, or other events network protocols: machines rather than humans all communication activity in Internet governed by protocols protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt 1: Introduction

What’s a protocol? a human protocol and a computer network protocol: Hi TCP connection req. Hi TCP connection reply. Got the time? Get http://gaia.cs.umass.edu/index.htm 2:00 <file> time Q: Other human protocol? 1: Introduction

A closer look at network structure: network edge: applications and hosts network core: routers network of networks access networks, physical media: communication links 1: Introduction

The network edge: end systems (hosts): client/server model run application programs e.g., WWW, email at “edge of network” client/server model client host requests, receives service from server e.g., WWW client (browser)/ server; email client/server peer-peer model: host interaction symmetric e.g.: Gnutella, KaZaA 1: Introduction

Network edge: connection-oriented service Goal: data transfer between end sys. handshaking: setup (prepare for) data transfer ahead of time Hello, hello back human protocol set up “state” in two communicating hosts TCP - Transmission Control Protocol Internet’s connection-oriented service TCP service [RFC 793] reliable, in-order byte-stream data transfer loss: acknowledgements and retransmissions flow control: sender won’t overwhelm receiver congestion control: senders “slow down sending rate” when network congested 1: Introduction

Network edge: connectionless service Goal: data transfer between end systems same as before! UDP - User Datagram Protocol [RFC 768]: Internet’s connectionless service unreliable data transfer no flow control no congestion control App’s using TCP: HTTP (WWW), FTP (file transfer), Telnet (remote login), SMTP (email) App’s using UDP: streaming media, teleconferencing, Internet telephony 1: Introduction

The Network Core mesh of interconnected routers the fundamental question: how is data transferred through net? circuit switching: dedicated circuit per call: telephone net packet-switching: data sent thru net in discrete “chunks” 1: Introduction

Network Core: Circuit Switching End-end resources reserved for “call” link bandwidth, switch capacity dedicated resources: no sharing circuit-like (guaranteed) performance call setup required 1: Introduction

Network Core: Circuit Switching network resources (e.g., bandwidth) divided into “pieces” pieces allocated to calls resource piece idle if not used by owning call (no sharing) dividing link bandwidth into “pieces” frequency division time division dividing link bandwidth into “pieces” frequency division time division 1: Introduction

Circuit Switching: FDMA and TDMA 4 users Example: FDMA frequency time TDMA frequency time Two simple multiple access control techniques. Each mobile’s share of the bandwidth is divided into portions for the uplink and the downlink. Also, possibly, out of band signaling. As we will see, used in AMPS, GSM, IS-54/136 1: Introduction

Network Core: Packet Switching each end-end data stream divided into packets user A, B packets share network resources each packet uses full link bandwidth resources used as needed, resource contention: aggregate resource demand can exceed amount available congestion: packets queue, wait for link use store and forward: packets move one hop at a time transmit over link wait turn at next link Bandwidth division into “pieces” Dedicated allocation Resource reservation 1: Introduction

Network Core: Packet Switching 10 Mbs Ethernet C A statistical multiplexing 1.5 Mbs B queue of packets waiting for output link 45 Mbs D E 1: Introduction

Packet switching versus circuit switching Packet switching allows more users to use network! 1 Mbit link each user: 100Kbps when “active” active 10% of time circuit-switching: 10 users packet switching: with 35 users, probability > 10 active less than .0004 N users 1 Mbps link 1: Introduction

Packet-switched networks: routing Goal: move packets among routers from source to destination we’ll study several path selection algorithms (chapter 4) datagram network: destination address determines next hop routes may change during session analogy: driving, asking directions virtual circuit network: each packet carries tag (virtual circuit ID), tag determines next hop fixed path determined at call setup time, remains fixed thru call routers maintain per-call state 1: Introduction

Access networks and physical media Q: How to connection end systems to edge router? residential access nets Cable modem institutional access networks (school, company) Local area networks mobile access networks Physical media coax, fiber Radio 1: Introduction