Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.

Slides:



Advertisements
Similar presentations
MODIS Ocean Products MODIS/AIRS Workshop Pretoria, South Africa April 4-7, 2006 Liam Gumley Space Science and Engineering Center University of Wisconsin-Madison.
Advertisements

Atmospheric correction using the ultraviolet wavelength for highly turbid waters State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute.
Development of a Simulated Synthetic Natural Color ABI Product for GOES-R AQPG Hai Zhang UMBC 1/12/2012 GOES-R AQPG workshop.
Evaluation of atmospheric correction algorithms for MODIS Aqua in coastal regions Goyens, C., Jamet, C., and Loisel, H. Atmospheric correction workshop.
Class 8: Radiometric Corrections
Liang APEIS Capacity Building Workshop on Integrated Environmental Monitoring of Asia-Pacific Region September 2002, Beijing,, China Atmospheric.
PJW, NASA, 13 Jun 2012, AtmCorr in Wimereux Comparison of ocean color atmospheric correction approaches for operational remote sensing of turbid, coastal.
Diurnal asymmetry in the GERB(-like) fluxes: an update Cédric Bertrand Royal Meteorological Institute of Belgium, Brussels, Belgium.
Atmospheric effect in the solar spectrum
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Menghua Wang NOAA/NESDIS/ORA E/RA3, Room 102, 5200 Auth Rd.
Atmospheric scatterers
Quantifying aerosol direct radiative effect with MISR observations Yang Chen, Qinbin Li, Ralph Kahn Jet Propulsion Laboratory California Institute of Technology,
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
Using satellite-bourne instruments to diagnose the indirect effect A review of the capabilities and previous studies.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Introduction to ocean color satellite calibration NASA Ocean Biology Processing Group Goddard Space.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
A.B. VIIRS (Nov. 20, 2013).
The IOCCG Atmospheric Correction Working Group Status Report The Eighth IOCCG Committee Meeting Department of Animal Biology and Genetics University.
Remote Sensing Image Rectification and Restoration
Atmospheric Correction and Adjacency effect (a little) Ken Voss, Ocean Optics Class, Darling Center, Maine, Summer 2011.
Atmospheric Correction Algorithms for Remote Sensing of Open and Coastal Waters Zia Ahmad Ocean Biology Processing Group (OBPG) NASA- Goddard Space Flight.
The use of MOD09 product and in situ data in a reservoir Valério, A.M.; Kampel, M.; Stech, J.L. alineval, milton, stech COSPAR Training.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
Wenbo Sun, Bruce Wielicki, David Young, and Constantine Lukashin 1.Introduction 2.Objective 3.Effect of anisotropic air molecules on radiation polarization.
Radiometric and Geometric Correction
Menghua Wang, NOAA/NESDIS/ORA Atmospheric Correction using the MODIS SWIR Bands (1240 and 2130 nm) Menghua Wang (PI, NASA NNG05HL35I) NOAA/NESDIS/ORA Camp.
Retrieving Coastal Optical Properties from MERIS S. Ladner 1, P. Lyon 2, R. Arnone 2, R. Gould 2, T. Lawson 1, P. Martinolich 1 1) QinetiQ North America,
What are the four principal windows (by wavelength interval) open to effective remote sensing from above the atmosphere ? 1) Visible-Near IR ( );
Remote sensing of aerosol from the GOES-R Advanced Baseline Imager (ABI) Istvan Laszlo 1, Pubu Ciren 2, Hongqing Liu 2, Shobha Kondragunta 1, Xuepeng Zhao.
Ocean Color Radiometer Measurements of Long Island Sound Coastal Observational platform (LISCO): Comparisons with Satellite Data & Assessments of Uncertainties.
Soe Hlaing *, Alex Gilerson, Samir Ahmed Optical Remote Sensing Laboratory, NOAA-CREST The City College of the City University of New York 1 A Bidirectional.
Introduction Invisible clouds in this study mean super-thin clouds which cannot be detected by MODIS but are classified as clouds by CALIPSO. These sub-visual.
Formerly Lecture 12 now Lecture 10: Introduction to Remote Sensing and Atmospheric Correction* Collin Roesler 11 July 2007 *A 30 min summary of the highlights.
Atmospheric Correction for Ocean Color Remote Sensing Geo 6011 Eric Kouba Oct 29, 2012.
Dr. North Larsen, Lockheed Martin IS&S Dr. Knut Stamnes, Stevens Institute Technology Use of Shadows to Retrieve Water Vapor in Hazy Atmospheres Dr. North.
RETRIEVING BRDF OF DESERT USING TIME SERIES OF MODIS IMAGERY Haixia Huang, Bo Zhong, Qinhuo Liu, and Lin Sun Presented by Bo Zhong Institute.
NOAA/NESDIS Cooperative Research Program Second Annual Science Symposium SATELLITE CALIBRATION & VALIDATION July Barry Gross (CCNY) Brian Cairns.
In Situ and Remote Sensing Characterization of Spectral Absorption by Black Carbon and other Aerosols J. Vanderlei Martins, Paulo Artaxo, Yoram Kaufman,
BIOPHYS: A Physically-based Algorithm for Inferring Continuous Fields of Vegetative Biophysical and Structural Parameters Forrest Hall 1, Fred Huemmrich.
ESA Frascati 31 Oct 1 Determination of the light availability in ocean water utilizing Vibrational Raman Scattering.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Menghua Wang, NOAA/NESDIS/ORA Refinement of MODIS Atmospheric Correction Algorithm Menghua Wang (PI, NASA NNG05HL35I) NOAA/NESDIS/ORA Camp Springs, MD.
Retrieving Water Leaving Radiances from MODIS Land and Ocean Color Channels Bo-Cai Gao 1, Marcos J. Montes 1, Rong-Rong Li 1, Heidi M. Dierssen 2, and.
A processing package for atmospheric correction of compact airborne spectrographic imager (casi) imagery over water including a novel sunglint correction.
1 Atmospheric correction over coastal and in land waters: Doing better with MERIS? Richard Santer Université du Littoral Côte d’Opale – 32, avenue Foch.
Chapter 3 Radiative transfer processes in the aquatic medium Remote Sensing of Ocean Color Instructor: Dr. Cheng-Chien LiuCheng-Chien Liu Department of.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Image: MODIS Land Group, NASA GSFC March 2000 Image: MODIS Land Group,
Polarization analysis in MODIS Gerhard Meister, Ewa Kwiatkowska, Bryan Franz, Chuck McClain Ocean Biology Processing Group 18 June 2008 Polarization Technology.
MODIS-Terra cross-calibration for ocean color bands Ewa Kwiatkowska Bryan Franz, Gerhard Meister, Gene Eplee OBPG 30 January 2008.
The Dirty Truth of Coastal Ocean Color Remote Sensing Dave Siegel & St é phane Maritorena Institute for Computational Earth System Science University of.
Ocean color atmospheric correction – Using a bio-optical model to address the “black pixel assumption” Ocean Optics Class University of Maine July 2011.
R. Santer and B. Berthelot Final meeting, ESRIN, Frascati, April 21, 2009 Calibration Test Sites Selection and Characterisation WP260 – Error analysis:
D e v e l o p m e n t o f t h e M N I R-S W I R a n d AA a t m o s p h e r I c c o r r e c t I o n a n d s u s p e n d e d s e d I m e n t c.
J. C. Stroeve, J. Box, F. Gao, S. Liang, A. Nolin, and C. Schaaf
JAXA Himawari-8 Ocean Color and Aerosol
Algorithm Theoretical Basis Document GlobAlbedo Aerosol Retrieval
Deep Convective Clouds (DCC) BRDF Characterization Using PARASOL Bidirectional Observations Bertrand Fougnie CNES.
Meteorological Satellite Center Japan Meteorological Agency
The ROLO Lunar Calibration System Description and Current Status
Jian Wang, Ph.D IMCS Rutgers University
MODIS Ocean Products MODIS/AIRS Workshop Pretoria, South Africa
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Lu Zhang, Peng Zhang , Xiuqing Hu, Lin Chen
Deep Convective Clouds (DCC) BRDF Characterization Using PARASOL Bidirectional Observations Bertrand Fougnie CNES.
Presentation transcript:

Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development Institute Seoul National University

I n d e x _ 1.Introduction _ -Atmospheric Correction -Atmospheric Algorithms of the GOCI > Standard NASA Algorithm > SGCA > SSMM 2.Process of Atmospheric Correction _ -Standard NASA Algorithm -SGCA -SSMM 3.Result & Validation _ -Result -Validation 4.Conclusion _ Ocean Color

1. Introduction _ Atmospheric Correction Atmospheric Correction Atmospheric Correction L TOA (555nm)Rrs(555nm) Atmospheric Correction Atmospheric Correction *L : radiance *Rrs : remote sensing reflectance

1. Introduction _ Atmospheric Correction Clear water / thin aerosol case *Lr: Radiance of molecular scattering La : Radiance of aerosol scattring *Lw : Radiance of Ocean Case 1 water : L W is 1~7% of L TOA

1. Introduction _ Atmospheric Correction Issue : GOCI has longer optical path than the polar orbit satellite (MODIS : 0˚ < Satellite zenith angle < 40˚) 26˚ < Satellite zenith angle < 55˚ Observation area Earth GOCI equator

1.Introduction _ 3 atmospheric Algorithms of the GOCI Standard NASA algorithm  A classical standard atmospheric correction algorithm  Developed by M.Wang & H.R.Gordon  Aerosol selection, turbid-water iterative method, diffuse transmittance models are updated by J.H.Ahn SSMM (Spectral Shape Matching Method)  Developed by Y.H.Ahn & P.Shanmugam  Using reference site  Aerosol models updated by J.H.Ahn SGCA (Sun-Glint Correction Algorithm)  Developed by HYGEOS  Removing sun-glint & atmospheric signal  Polynomial fitting algorithm (ocean color & atmospheric model)

2. Process of Atmospheric Correction _ Geometric Corrected TOA Radiance Image L TOA (λ) Geometric Corrected TOA Radiance Image L TOA (λ) Raw Image Reflectance of TOA Image ρ(λ)=ρ‘ (λ) + ρ R (λ) Reflectance of TOA Image ρ(λ)=ρ‘ (λ) + ρ R (λ) Reflectance of Ocean + Aerosol Image ρ‘ (λ) = T d (λ)ρ W (λ) + ρ A (λ) + ρ RA (λ) Reflectance of Ocean + Aerosol Image ρ‘ (λ) = T d (λ)ρ W (λ) + ρ A (λ) + ρ RA (λ) Reflectance of Ocean Image ρ W (λ) Reflectance of Ocean Image ρ W (λ) Level 2 Product Chl, SS, CDOM, Kd490, … Level 2 Product Chl, SS, CDOM, Kd490, … Radiometric Calibration & Geometric Correction Downward Solar Irradiance Normalization  Longitude, Latitude, Time, SZA, VZA, AZA Remove Rayleigh & Sun-glint Reflectance & Mask  Radiative Transfer Equation, Cox&Munk Model Remove Aerosol Reflectance  Radiative Transfer Equation, Aerosol Model Underwater Algorithm Reflectance of Ocean Image Rrs(λ) Reflectance of Ocean Image Rrs(λ) Atmospheric Correction Standard NASA Algorithm SSMMSGCA

2. Process of Atmospheric Correction _ Step 1. Downward Solar Irradiance Normalization Downward Solar Irradiance Normalization L TOA (λ) cos(θ S ) * θ S : solar zenith angle F0(λ) : Extraterrestrial spectral irradiance ρ TOA (λ)

Process of Atmospheric Correction _ - Slot Correction of Solar Irradiance Normalization cos(θ S ) Step 1. Downward Solar Irradiance Normalization

2. Process of Atmospheric Correction _ Step 2. Remove Rayleigh Signal ρ TOA (443nm)ρ R (443nm) ρ‘ (443nm)

2. Process of Atmospheric Correction _ - Remove direct & sun-glinted Rayleigh reflectance  Computed by radiative transfer equation  Integrate with GOCI bands’ spectral response  Using pre-computed LUT  Wind speed : 0~16 m/s Step 3. Remove Rayleigh & Sun-glint Reflectance Scattering off a rough sea surface Molecular scattering

M 2. Process of Atmospheric Correction _ Step 3. Land & Cloud Masking - Using threshold of Band8 (865nm) - Masking 5x5 around the above threshold pixel MMM MMMMM MMMMM MMMMM MMM

2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal ρ‘ (555nm)ρ A (555nm)+ρ RA (555nm)ρ W (555nm)

2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Standard NASA algorithm  Basic Assumption : ρ W (NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm) Atmospheric Correction Select 2 Aerosol Type Multiple Scattering to Single Scattering for all Aerosol Types Get Two Aerosol Models (model1/model2) ε model1 (B7, B8) < ε ave (B7, B8) < ε model2 (B7, B8) Look-up Table from RTE (6S) Calculate Multiple Scattering of Specific Aerosol type Get ε (λ, B8) for all band Calculate Single Scattering of 2 Specific Aerosol type Calculate Single Scattering Reflectance for all Band  ρ as model (λ) 2 Aerosol Models sza/vza/aza ρ as model1 (λ) ρ as model2 (λ) Get ρ a (λ) + ρ ra (λ) and t(λ) of 2 models Interpolate ρ a (λ) + ρ ra (λ) and t(λ) of 2 models Calculate Rayleigh Scattering

2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Standard NASA algorithm  Aerosol model selection (Modified) Select 2 Aerosol Type Multiple Scattering to Single Scattering for all Aerosol Types Get Two Aerosol Models (model1/model2) ε model1 (B7, B8) < ε ave (B7, B8) < ε model2 (B7, B8) Average all aerosol models’ ε(B7, B8) Select 4 aerosol models Average 4 aerosol models’ ε(B7, B8) Select 2 aerosol models Get weight of 2 aerosol models

2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Aerosol models  Maritime (RH 50%, RH 80%, RH 99%)  Urban (RH 50%, RH 80%, RH 99%)  Continental (RH 50%, RH 80% RH 99%) Band 8 signal (aerosol signal) Aerosol model selection result Aerosol removed signal (pure ocean signal : ρ w (443)) East sea

2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Reflectance - SSMM (Spectral Shape Matching Method)  Assumption : ρ W (NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm)  Assumption : ρ aerosol_model_1 (λ) + ρ aerosol_model_2 (λ) = 0  Use reference site’s spectrum shape Atmospheric Correction LUT Reflectance of Specific Aerosol type 2 Aerosol Models sza/vza/aza ρ a (λ) + ρ ra (λ) and t(λ) Calculate Rayleigh Scattering Reference site Get Aerosol reflectance Get Two Aerosol Models & mixing ratio from LUT

ρ TOA (NIR)=ρ r (NIR) + ρ a (NIR) + ρ ra (NIR) + t(NIR) ρ f (NIR) + t(NIR) ρ w (NIR) ρ r (λ)  calculated by RTE ρ a (λ) + ρ ra (λ)  calculated by LUT t(NIR)  calculated by LUT + RTE ρ f (NIR)  calculated by Cox&Munk’s Eq ρ r (λ)  calculated by RTE ρ a (λ) + ρ ra (λ)  calculated by LUT t(NIR)  calculated by LUT + RTE ρ f (NIR)  calculated by Cox&Munk’s Eq ρ w (λ)  chl, ss Atmospheric Correction Underwater Algorithm CHL, TSM  ρ w (NIR) Ocean Color Model ρ w (λ), chl  corrected ρ w (λ) BRDF 2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Reflectance - Iterative Method of NASA Standard Algorithm & SSMM  Turbid water : ρ W (NIR) ≠0

2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Iterative Method of NASA Standard Algorithm & SSMM  Rrs(NIR) = f/Q*b b (NIR)/(a(NIR)+b b (NIR)) - Bb(NIR) = b b w (NIR)+b b chl (NIR) + b b nc (NIR) - a(NIR) = a w (NIR)+ a chl (NIR) + a nc (NIR ρ W (865nm)

2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal ρ‘ (λ) Td(λ) ρ W MOD (λ) + ρ A (λ)+ρ RA (λ)+ error (λ) ρ W MOD parameters (λ, chl, Bb S ) ρ Aerosol MOD parameters (C 0, C 1, C 2 ) Min-error (λ) Final value (chl, C0, C1, C2) ρ W (λ) - SGCA (Sun-glint Correction Algorithm)  Basic Assumption : ρ W MOD (λ) is valid  Polynomial fitting : ρ W MOD (λ) & ρ Aerosol MOD (λ)  ρ W MOD (λ) : Using Biogenic optical model (by A.Morel)  ρ Aerosol MOD (λ) : C 0 + C 1 λ -2 + C 2 λ -4

B1 2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance - Extract Rayleigh diffuse transmittance  Generic Rayleigh diffuse transmittance model  τ r (λ) : use H.R.Gordon’s model B3B4B8 Td r cos(Ф) Model’s Td r RTE’s Td r

2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance - Extract Rayleigh diffuse transmittance  A simple Rayleigh diffuse transmittance model C6C6 C5C5 C4C4 C3C3 C2C2 C1C1 C0C0 412nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E-01

2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance - Get aerosol diffuse transmittance from AOT  Aerosol model, single scattering reflectance, single scattering albedo, phase function  Get aerosol optical thickness  A simple aerosol diffuse transmittance model (Hajime Fukushima, 1998) - Using Aerosol+Rayleigh LUT (Future work)  A generic data driven method

GOCI with NASA standard 2011/03/17 03:16 (UTC) 3. Result & Validation _ Result Comparison images of GOCI & MODIS (NASA Standard Algorithm) MODIS with NASA standard 2011/03/17 05:05 (UTC)

3. Result & Validation _ Result Comparison spectrums of GOCI & MODIS (with NASA Standard Algorithm) B1 : 412nm B2 : 443nm B3 : 490nm (MODIS : 488nm) B4 : 555nm (MODIS : 551nm) B5 : 660nm (MODIS : 667nm) B6 : 680nm (MODIS : 678nm) GOCI MODIS GOCI MODIS

SSMM Rrs(412nm)SSMM Rrs(443nm)SSMM Rrs(490nm)SSMM Rrs(555nm) MODIS Rrs(412nm)MODIS Rrs(443nm)MODIS Rrs(490nm)MODIS Rrs(555nm) GOCI : SSMM 2010/09/17 04:16 (UTC) MODIS : NASA Standard Algorithm 2010/09/17 04:45 (UTC) 3. Result & Validation _ Result Comparison images of SSMM & MODIS (NASA Standard Algorithm)

SSMM nLw(555nm): :16 (UTC)SGCA nLw(555nm): :16 (UTC)MODIS nLw(555nm): :25 (UTC) Comparison nLw spectrums of SSMM & SGCA & MODIS (NASA Standard Algorithm) 3. Result & Validation _ Validation SSMM SGCA NASA Standard (MODIS)

4. Conclusion _ - NASA Standard Algorithm for the GOCI - Basic schema is all implemented. - Need to improve the ocean color model - Add more good arrangement aerosol models - Need to consider the new aerosol model for the GOCI observation area - Change to the look up table based diffuse transmittance estimation - Aerosol model selection and weight method update - SSMM - Looks reasonable but needs more tuning - Better result high turbidity water and blue absorption aerosol case - Also consider about horizontal aerosol type changes - Collect more reference site - SGCA - Relatively good matching at the high optical thickness case - Improvement for turbid water - Needs more local tuning

THANK YOU