Econometrics I Professor William Greene Stern School of Business

Slides:



Advertisements
Similar presentations
Econometric Analysis of Panel Data
Advertisements

Econometrics I Professor William Greene Stern School of Business
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling
Chapter 12 Inference for Linear Regression
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2013 William Greene Department of Economics Stern School.
Lesson 10: Linear Regression and Correlation
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Part 11: Asymptotic Distribution Theory 11-1/72 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Part 17: Nonlinear Regression 17-1/26 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Part 12: Asymptotics for the Regression Model 12-1/39 Econometrics I Professor William Greene Stern School of Business Department of Economics.
[Part 1] 1/15 Discrete Choice Modeling Econometric Methodology Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Part 4: Prediction 4-1/22 Regression Models Professor William Greene Stern School of Business IOMS Department Department of Economics.
Simple Linear Regression. G. Baker, Department of Statistics University of South Carolina; Slide 2 Relationship Between Two Quantitative Variables If.
Part 12: Random Parameters [ 1/46] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Multiple Regression Involves the use of more than one independent variable. Multivariate analysis involves more than one dependent variable - OMS 633 Adding.
Statistical Inference and Regression Analysis: GB Professor William Greene Stern School of Business IOMS Department Department of Economics.
1 Econometrics 1 Lecture 6 Multiple Regression -tests.
Part 4: Partial Regression and Correlation 4-1/24 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Part 7: Multiple Regression Analysis 7-1/54 Regression Models Professor William Greene Stern School of Business IOMS Department Department of Economics.
Simple Linear Regression Analysis
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University.
2. Binary Choice Estimation. Modeling Binary Choice.
Econometric Methodology. The Sample and Measurement Population Measurement Theory Characteristics Behavior Patterns Choices.
1. Descriptive Tools, Regression, Panel Data. Model Building in Econometrics Parameterizing the model Nonparametric analysis Semiparametric analysis Parametric.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Part 3: Regression and Correlation 3-1/41 Regression Models Professor William Greene Stern School of Business IOMS Department Department of Economics.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Part 24: Multiple Regression – Part /45 Statistics and Data Analysis Professor William Greene Stern School of Business IOMS Department Department.
Regression and Correlation Methods Judy Zhong Ph.D.
Empirical Methods for Microeconomic Applications William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Part 5: Random Effects [ 1/54] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Part 17: Regression Residuals 17-1/38 Statistics and Data Analysis Professor William Greene Stern School of Business IOMS Department Department of Economics.
Discrete Choice Modeling William Greene Stern School of Business New York University.
[Part 4] 1/43 Discrete Choice Modeling Bivariate & Multivariate Probit Discrete Choice Modeling William Greene Stern School of Business New York University.
Part 9: Hypothesis Testing /29 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Part 2: Model and Inference 2-1/49 Regression Models Professor William Greene Stern School of Business IOMS Department Department of Economics.
Part 16: Regression Model Specification 16-1/25 Statistics and Data Analysis Professor William Greene Stern School of Business IOMS Department Department.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
[Topic 2-Endogeneity] 1/33 Topics in Microeconometrics William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/62: Topic 2.3 – Panel Data Binary Choice Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA.
Correlation & Regression Analysis
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2013 William Greene Department of Economics Stern School.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
1/53: Topic 3.1 – Models for Ordered Choices Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William.
6. Ordered Choice Models. Ordered Choices Ordered Discrete Outcomes E.g.: Taste test, credit rating, course grade, preference scale Underlying random.
[Part 5] 1/43 Discrete Choice Modeling Ordered Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
5. Extensions of Binary Choice Models
Decomposition of Sum of Squares
William Greene Stern School of Business New York University
William Greene Stern School of Business New York University
Econometric Analysis of Panel Data
Microeconometric Modeling
6-1 Introduction To Empirical Models
Microeconometric Modeling
Econometrics Analysis
Econometrics I Professor William Greene Stern School of Business
Econometrics I Professor William Greene Stern School of Business
Econometrics I Professor William Greene Stern School of Business
Microeconometric Modeling
Chengyuan Yin School of mathematics
Econometrics I Professor William Greene Stern School of Business
Econometrics I Professor William Greene Stern School of Business
Presentation transcript:

Econometrics I Professor William Greene Stern School of Business Department of Economics

Econometrics I Part 10 - Prediction

Forecasting Objective: Forecast Distinction: Ex post vs. Ex ante forecasting Ex post: RHS data are observed Ex ante: RHS data must be forecasted Prediction vs. model validation. Within sample prediction “Hold out sample”

Prediction Intervals Given x0 predict y0. Two cases: Estimate E[y|x0] = x0; Predict y0 = x0 + 0 Obvious predictor, b’x0 + estimate of 0. Forecast 0 as 0, but allow for variance. Alternative: When we predict y0 with bx0, what is the 'forecast error?' Est.y0 - y0 = bx0 - x0 - 0, so the variance of the forecast error is x0Var[b - ]x0 + 2 How do we estimate this? Form a confidence interval. Two cases: If x0 is a vector of constants, the variance is just x0 Var[b] x0. Form confidence interval as usual. If x0 had to be estimated, then we use a random variable. What is the variance of the product? (Ouch!) One possibility: Use bootstrapping.

Forecast Variance Variance of the forecast error is 2 + x0’ Var[b]x0 = 2 + 2[x0’(X’X)-1x0] If the model contains a constant term, this is In terms squares and cross products of deviations from means. Interpretation: Forecast variance is smallest in the middle of our “experience” and increases as we move outside it.

Butterfly Effect

Internet Buzz Data

A Prediction Interval The usual 95% Due to ε Due to estimating α and β with a and b

Slightly Simpler Formula for Prediction

Prediction from Internet Buzz Regression

Prediction Interval for Buzz = .8

Dummy Variable for One Observation A dummy variable that isolates a single observation. What does this do? Define d to be the dummy variable in question. Z = all other regressors. X = [Z,d] Multiple regression of y on X. We know that X'e = 0 where e = the column vector of residuals. That means d'e = 0, which says that ej = 0 for that particular residual. The observation will be predicted perfectly. Fairly important result. Important to know.

Oaxaca Decomposition Two groups, two regression models: (Two time periods, men vs. women, two countries, etc.) y1 = X11 + 1 and y2 = X22 + 2 Consider mean values, y1* = E[y1|mean x1] = x1* 1 y2* = E[y2|mean x2] = x2* 2 Now, explain why y1* is different from y2*. (I.e., departing from y2, why is y1 different?) (Could reverse the roles of 1 and 2.) y1* - y2* = x1* 1 - x2* 2 = x1*(1 - 2) + (x1* - x2*) 2 (change in model) (change in conditions)

The Oaxaca Decomposition

Application - Income German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods Variables in the file are Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 individuals. They can be used for regression, count models, binary choice, ordered choice, and bivariate binary choice.  This is a large data set.  There are altogether 27,326 observations.  The number of observations ranges from 1 to 7.  (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).  HHNINC =  household nominal monthly net income in German marks / 10000. (4 observations with income=0 were dropped) HHKIDS = children under age 16 in the household = 1; otherwise = 0 EDUC =  years of schooling AGE = age in years MARRIED = 1 if married, 0 if not FEMALE = 1 if female, 0 if male

Regression: Female=0 (Men)

Regression Female=1 (Women)

Pooled Regression

Application namelist ; X = one,age,educ,married,hhkids$ ? Get results for females include ; new ; female=1$ Subsample females regr ; lhs=hhninc;rhs=x$ Regression matrix ; bf=b ; vf = varb ; xbarf = mean(x) $ Coefficients, variance, mean X calc ; meanincf = bf'xbarf $ Mean prediction for females ? Get results for males include ; new ; female=0$ Subsample males matrix ; bm=b ; vm = varb ; xbarm = mean(x) $ Coefficients, etc. calc ; meanincm = bm'xbarm $ Mean prediction for males ? Examine difference in mean predicted income calc ; list ; meanincm ; meanincf Display means ; diff = xbarm'bm - xbarf'bf $ Difference in means matrix ; vdiff = xbarm'[vm]xbarm + xbarf'[vf]xbarf $ Variance of difference calc ; list ; diffwald = diff^2 / vdiff $ Wald test of difference = 0 ? “Discrimination” component of difference matrix ; db = bm-bf ; discrim = xbarm'db Difference in coeffs., discrimination ; vdb = vm+vf ; vdiscrim = xbarm'[vdb]xbarm $ Variance of discrimination calc ; list ; discrim ; dwald = discrim^2 / vdiscrim $ Walt test that D = 0. ? “Difference due difference in X” matrix ; dx = xbarm - xbarf $ Difference in characteristics matrix ; qual = dx'bf ; vqual = dx'[vf]dx $ Contribution to total difference calc ; list ; qual ; qualwald = qual^2/vqual $ Wald test.

Results +------------------------------------+ | Listed Calculator Results | MEANINCM = .359054 MEANINCF = .344495 DIFF = .014559 DIFFWALD = 52.006502 DISCRIM = -.005693 DWALD = 7.268757 QUAL = .020252 QUALWALD = 1071.053640

Decompositions