Vortragstitel 1 Kinetic Mechanism For Low Pressure Oxygen / Methane Ignition and Combustion N.A. Slavinskaya, M. Wiegand, J.H. Starcke, U. Riedel, O.J.Haidn.

Slides:



Advertisements
Similar presentations
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Advertisements

AP STUDY SESSION 2.
Advanced Piloting Cruise Plot.
1
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
Kapitel S3 Astronomie Autor: Bennett et al. Raumzeit und Gravitation Kapitel S3 Raumzeit und Gravitation © Pearson Studium 2010 Folie: 1.
1 Chapter 6 EnergyThermodynamics. 2 Energy is... n The ability to do work. n Conserved. n made of heat and work. n a state function. n independent of.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Disability status in Ethiopia in 1984, 1994 & 2007 population and housing sensus Ehete Bekele Seyoum ESA/STAT/AC.219/25.
UNITED NATIONS Shipment Details Report – January 2006.
David Burdett May 11, 2004 Package Binding for WS CDL.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
CALENDAR.
Prime and Composite Numbers. These are numbers that have only two factors – themselves and one. These are numbers that have only two factors – themselves.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
ZMQS ZMQS
Solve Multi-step Equations
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Break Time Remaining 10:00.
The basics for simulations
PP Test Review Sections 6-1 to 6-6
ABC Technology Project
EU Market Situation for Eggs and Poultry Management Committee 21 June 2012.
2 |SharePoint Saturday New York City
1 Application of for Predicting Indoor Airflow and Thermal Comfort.
VOORBLAD.
15. Oktober Oktober Oktober 2012.
TCCI Barometer March “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
TCCI Barometer September “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
Before Between After.
Benjamin Banneker Charter Academy of Technology Making AYP Benjamin Banneker Charter Academy of Technology Making AYP.
25 seconds left…...
Subtraction: Adding UP
: 3 00.
5 minutes.
Januar MDMDFSSMDMDFSSS
We will resume in: 25 Minutes.
1 Titre de la diapositive SDMO Industries – Training Département MICS KERYS 09- MICS KERYS – WEBSITE.
Static Equilibrium; Elasticity and Fracture
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Converting a Fraction to %
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Physics for Scientists & Engineers, 3rd Edition
Select a time to count down from the clock above
1 Dr. Scott Schaefer Least Squares Curves, Rational Representations, Splines and Continuity.
Lecture 36 Combustion Reactions.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Presentation transcript:

Vortragstitel 1 Kinetic Mechanism For Low Pressure Oxygen / Methane Ignition and Combustion N.A. Slavinskaya, M. Wiegand, J.H. Starcke, U. Riedel, O.J.Haidn Institute of Combustion Technology, Institute of Space Propulsion, German Aerospace Centre (DLR)

Folie 2 Vortragstitel 2 Introduction Methane in Aerospace Propulsion in Europe Kinetic Mechanisms for O 2 /CH 4 Low Pressure Methane Combustion Mechanism Development Mechanism Validation Analysis Pollution formation: CO, NO x, PAH Conclusions & Outlook OVERVIEW

Folie 3 Vortragstitel 3 CH 4 - related Propulsion Activities in Europe Development of detailed and reduced chemical kinetic schemes for high pressure CH 4 /O 2 combustion including the formation of soot precursors (PAH) (EU FP6 project LAPCAT 1, closed 2008) CFD modeling injection and combustion and nozzle performance studies of CH 4 /O 2 at low pressure using commercial and in-house CFD tools (EU FP7 project GRASP, ongoing) Chemical Kinetics Modeling and CFD modeling for CH 4 /O 2 Ignition (EU FP7 project ISP-1, ongoing) Establishment of CH 4 /O 2 Thermodynamic and Transport Properties Data Base (EU FP7 project ISP-1, ongoing) Numerical Studies and Chemical Modeling

Folie 4 Vortragstitel 4 CH 4 - related Propulsion Activities in Europe LOX/LCH 4 and GOX/GCH 4 ignition and combustion studies (EU FP7 project ISP-1, ongoing) LOX/CH 4 gas generator (fuel rich) ignition studies (EU FP7 project LAPCAT II, ongoing) CH 4 film cooling (EU FP7 project ISP-1, ongoing) LOX/CH 4 staged combustion testing at P8 (FLPP, closed 2009) LOX/CH 4 subscale testing at FAST 2 (Avio, nat. program, closed 2009) LOX / CH 4 LM10-Mira demo testing at CADB (Avio, nat. program, 2011) Experimental Studies

Folie 5 Vortragstitel 5 The detailed investigations of the interaction of the rocket plumes, i.e. the exhaust gases, particles of the propellants with the atmosphere. MOTIVATION The final step of the reaction mechanism development is its extension to the NOx sub mechanism. The large number of launches is foreseen, which exceeds by far the current launch rate of about 40 launches per year. Numerical Studies and Chemical Modeling the possible formation of CO, CO 2, NO, NO 2, N 2 O, and PAHs.

Folie 6 Vortragstitel 6 Methane kinetic mechanisms and their validation data base ISP-I operating conditions atm < p < 1 atm and 0.5 < Ф < 3.0

Folie 7 Vortragstitel 7 Input Model: DLR_LS Mechanism Sub Mechanism Species/ Reaction Validation Parameters Validation Data CH4/CH3OH/O2/ Air 46 / 398 (93 / 729) p = bar,  = 0,5 – 2, T 0 = 300 – 1200 K Laminar flame speed, Ignition delay times, PAH/Soot Formation consistent hierarchical structure “first principals” continuous adaptation, validation and optimization of the kinetic characteristics Slavinskaya, Frank, Comb.Flame, 2009 Slavinskaya, Haidn, AIAA , 2008

Folie 8 Vortragstitel 8 New data provoked with the syngas activities, validated on the syngas data Mechanism development : strategy A.Konnov Mechanism

Folie 9 Vortragstitel 9 ReactionMean value  % H + O2 = OH + O8,22E-148,19 OH + H2 = H2O + H2,12E-1210,53 H2 + O =OH + H3,54E-1320,82 H+HO2 = H2 + O22,92E-1135,10 H2O2 + H = HO2 + H21,11E-1251,36 OH + OH (+M) =H2O2(+M)3,05E-321,99 H + O2 (+M) = HO2 (+M)1,01E-3211,67 O2 + CO = CO2 + O1,29E-2233,90 CO + O (+M) =CO2 (+M)6,58E-3482,31 CO + OH =CO2 + H2,55E-1343,36 CO + HO2 =CO2 + OH9,54E-1656,95 HCO (+M) = H + CO (+M)5,83E-1430,20 Mean values and deviations for reaction rates in H 2 /CO subsystem calculated from data of 7 different reaction models at T=1000K 1.8 – 57.4 % Slavinskaya Starke, Riedel, 2011, in preparation for H 2 /CO mixtures

Folie 10 Vortragstitel 10 Review and actual data for reaction rates : H 2 /CO subsystem 2H+AR = H2+AR 2H+N2 = H2+N2 2H+H2O = H2+H2O 2H+H = H2+H OH+H2 = H2O+H 2OH(+M) = H2O2(+M) H2O2(+AR) = 2OH(+AR) H2O2(+N2) = 2OH(+N2) OH+OH (+ H2O) = H2O2 (+ H2O) O2+H(+M) = HO2(+M) O2+H(+AR) = HO2(+AR) O2+H(+H2O) = HO2(+H2O) H+O2(+HE) = HO2(+HE) H+O2(+O2) = HO2(+O2) H+O2(+H2O) = HO2(+H2O) 2O+M = O2+M H+OH+M = H2O+M H+O+M = OH+M H+HO2 = H2+O2 H+HO2 = 2OH HCO+M = H+CO+M H2+O2 = OH + OH CO+O+M = CO2+M CO+HO2 = CO2+OH Baulch, D.L., Cobos, C.J., 1994 Wooldridge, M.S., Hanson R.K., et al.,1996 Isaacson, A.D., 1997 Karach, S.P., Osherov, V.I.,1999 Baulch, D.L., Bowman, C.T. et al., 2005 You, X., Wang, H., et al., 2007 Konnov, A., 2008 Shatalov, O.P., Ibraguimova, L.B., et al.,2009

Folie 11 Vortragstitel 11 Mechanism validation: experimental data base

Folie 12 Vortragstitel 12 Mechanism validation: low pressure ignition

Folie 13 Vortragstitel 13 Mechanism validation: low pressure flame speed Exp. Ombrello et al., 2011, p=0.16 atm.

Folie 14 Vortragstitel 14 Mechanism validation: low pressure laminar flame P = 25 Torr

Folie 15 Vortragstitel 15 Mechanism validation: low pressure laminar flame, p=0.05 atm

Folie 16 Vortragstitel 16 Mechanism validation: low pressure laminar flame, p=0.05 atm

Folie 17 Vortragstitel 17 Mechanism validation: low pressure laminar flame, p=0.05 atm

Folie 18 Vortragstitel 18 Mechanism validation: CO/H2 sub mechanism

Folie 19 Vortragstitel 19 Mechanism validation: NOX sub mechanism CH 4 /air laminar premixed flame data, p = 1.0 atm, Ф = 0.6.

Folie 20 Vortragstitel 20 Mechanism validation: NOX sub mechanism ac JSR concentration profiles for CH4/O2/NO/N2 mixture, p = 1.0 atm, Ф = 0.1, residents time 120ms. Dagaut, P., Nicolle, A.,2005

Folie 21 Vortragstitel 21 Reactor network chain schematic Interaction of exhaust gas with the atmosphere Model schematic for rocket engines

Folie 22 Vortragstitel 22 Reactor input data for calculations

Folie 23 Vortragstitel 23 Simulations: Temperature distribution in exhaust

Folie 24 Vortragstitel 24 Simulations: CO and CO2 distribution in exhaust High concentration

Folie 25 Vortragstitel 25 Simulations: NO distribution in exhaust High concentration

Folie 26 Vortragstitel 26 Simulations: NO2 distribution in exhaust Low concentration

Folie 27 Vortragstitel 27 CONCLUSIONS Low Pressure O 2 /CH 4 Kinetic Mechanisms developed as further extension of DLR_LS mechanism for operating conditions 0.03 atm < p < 1 atm, 300 K < T 0 < 1800 K and 0.36 < Ф < 2.0 Extension of Low Pressure Scheme towards Rocket Plume Chemistry (NOx, CO, PAHs) Simulations of the low pressure reactions in the exhaust plume of a CH4/LOX rocket engine under the strato- and mesosphere conditions ( bar) shown that the relatively high amount of NOx and CO Simulations did not support the PAH formation under given conditions

Folie 28 Vortragstitel 28 Thanks you for your attention Acknowledgments Part of this work was performed within the “ ISP-1” project, coordinated by SNECMA, and supported by the European Union within the 7th Framework Program for Research & Technology. (Grant agreement N° ) Lots of thanks to Dr. Eric L. Petersen for the sent experimental data

Folie 29 Vortragstitel 29 Update for H2/CO reactions: new data for reaction rates. Mechanism reduction Full model (47/311) for low pressure CH4 Ignition,laminar flame, concentration profiles NOx mechanism addition New data provoked with the syngas activities, validated on the syngas data