Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
©rlc L16-07Mar20111 PiN Diode PiN: N a >> N int (= N - ) & N int
Advertisements

Ozone Level ppb (parts per billion)
1  1 =.
Area of triangles.
Lecture-6 Thermal Design-2 Dr. Tahir Izhar
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
L3 January 221 Semiconductor Device Modeling and Characterization EE5342, Lecture 3-Spring 2002 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 12 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L9 February 151 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 10 Spring 2010 Professor Ronald L. Carter
L27 April 241 Semiconductor Device Modeling & Characterization Lecture 27 Professor Ronald L. Carter Spring 2001.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L04,... June 11,...1 Electronics I EE 2303/602 - Summer ‘01 Lectures 04,... Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter
Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Diodes Introduction Textbook CD
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Changing Device Parameters in PSpice
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Thermal Modeling for Modern VLSI Circuits
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 16 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

SPICE Diode Temp. Eqs.1 ©rlc L16-07Mar2011

Corrections in some versions of SPICE ©rlc L16-07Mar2011

SPICE Diode Temp. Pars.1 PARAMETER definition and units default value XTI IS temperature exponent 3.0 TIKF ikf temperature coefficient (linear) °C -1 0.0 TRS1 rs temperature coefficient (linear) °C -1 0.0 TRS2 rs temperature coefficient (quadratic) °C -2 0.0 TBV1 bv temperature coefficient (linear) °C -1 0.0 TBV2 bv temperature coefficient (quadratic) °C -2 0.0 T_ABS absolute temperature °C T_MEASURED measured temperature °C T_REL_GLOBAL relative to current temperature °C T_REL_LOCAL Relative to AKO model temperature °C ©rlc L16-07Mar2011

Thermal Resistance ©rlc L16-07Mar2011

Self-Heating Effects Id (A) Vd,ext = Vd + Id*RS 348K < TNOM < 300K 10 mW 20 mW 30 mW 40 mW 50 mW 60 mW 70 mW 80 mW Rth = 0 K/W , RS = 0.32 W Rth = 600 K/W, RS = 1 W ©rlc L16-07Mar2011

Self-Heating Effects SPICE models the IS, etc. the same for all power dissipations. The effect of diode self-heating is to increase the current at all voltages. In this case, an Rth of 600K/W gave nearly the same simulation as re-setting RS from 1 Ohm to 0.32 Ohm. The diode Tj is different at all curr. ©rlc L16-07Mar2011

PiN Diode PiN: Na >> Nint (= N-) & Nint << Nd Wi = Intrinsic region (metall.) width Em,P-T = Peak field mag. when xn = Wi Vbi = fi = Vtln(NaNd/ni2) Vbi,int = fi,int = Vtln(NaNint/ni2) VHL = Vtln(Nd/Nint), the offset at N+N- Vbi = Vbi,int + VHL VPT = applied voltage when xn = Wi ©rlc L16-07Mar2011

PiN Diode Depletion Fields Normalized Position, x’ = x/Wi Normalized Field, E/Em,P-T dx’p dx’n x’n -x’p ©rlc L16-07Mar2011

PiN Diode Depletion Conditions ©rlc L16-07Mar2011

CV data and N(x) calculation ©rlc L16-07Mar2011

Diode Switching Consider the charging and discharging of a Pn diode (Na > Nd) Wd << Lp For t < 0, apply the Thevenin pair VF and RF, so that in steady state IF = (VF - Va)/RF, VF >> Va , so current source For t > 0, apply VR and RR IR = (VR + Va)/RR, VR >> Va, so current source ©rlc L16-07Mar2011

Diode switching (cont.) VF,VR >> Va F: t < 0 Sw RF R: t > 0 VF + RR D VR + ©rlc L16-07Mar2011

Diode charge for t < 0 pn pno x xn xnc ©rlc L16-07Mar2011

Diode charge for t >>> 0 (long times) pn pno x xn xnc ©rlc L16-07Mar2011

Equation summary ©rlc L16-07Mar2011

Snapshot for t barely > 0 pn Total charge removed, Qdis=IRt pno x xn xnc ©rlc L16-07Mar2011

I(t) for diode switching ID IF ts ts+trr t - 0.1 IR -IR ©rlc L16-07Mar2011

References 1Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. **OrCAD Pspice A/D Reference Guide, Copyright 1999, OrCAD, Inc. ***MicroSim OnLine Manual, MicroSim Corporation, 1996. ©rlc L16-07Mar2011