1 Individual Particle Reconstruction CHEP07, Victoria, September 6, 2007 Norman Graf (SLAC) Steve Magill (ANL)

Slides:



Advertisements
Similar presentations
SiW ECAL R&D in CALICE Nigel Watson Birmingham University For the CALICE Collab. Motivation CALICE Testbeam Calibration Response/Resolution MAPS Option.
Advertisements

A MAPS-based readout of an electromagnetic calorimeter for the ILC Nigel Watson (Birmingham Univ.) Motivation Physics simulations Sensor simulations Testing.
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Henri Videau LLR Ecole polytechnique - IN2P3/CNRSCalor Calorimetry optimised for jets Henri Videau Jean- Claude Brient Laboratoire Leprince-Ringuet.
PFA-Enhanced Dual Readout Crystal Calorimetry Stephen Magill - ANL Hans Wenzel - FNAL Outline : Motivation Detector Parameters Use of a PFA in Dual Readout.
Particle Flow Template Modular Particle Flow for the ILC Purity/Efficiency-based PFA PFA Module Reconstruction Jet Reconstruction Stephen Magill Argonne.
1 Study of the Tail Catcher Muon Tracker (TCMT) Scintillator Strips and Leakage with Simulated Coil Rick Salcido Northern Illinois University For CALICE.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
Some early attempts at PFA Dhiman Chakraborty. LCWS05 Some early attempts at PFA Dhiman Chakraborty2 Introduction Primarily interested in exploring the.
 Track-First E-flow Algorithm  Analog vs. Digital Energy Resolution for Neutral Hadrons  Towards Track/Cal hit matching  Photon Finding  Plans E-flow.
 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter.
Individual Particle Reconstruction Norman Graf SLAC April 28, 2005.
1 Benchmarking the SiD Tim Barklow SLAC Sep 27, 2005.
PFA Development – Definitions and Preparation 0) Generate some events w/G4 in proper format 1)Check Sampling Fractions ECAL, HCAL separately How? Photons,
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, U.S. LC Calorimeter Group.
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, Brian Musgrave, Norman Graf, U.S. LC Calorimeter Group.
Application of Neural Networks for Energy Reconstruction J. Damgov and L. Litov University of Sofia.
Track Extrapolation/Shower Reconstruction in a Digital HCAL – ANL Approach Steve Magill ANL 1 st step - Track extrapolation thru Cal – substitute for Cal.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
J-C BRIENT Prague Performances studies of the calorimeter/muon det. e + e –  W + W – at  s=800 GeV Simulation SLAC-Gismo Simulation MOKKA-GEANT4.
The PFA Approach to ILC Calorimetry Steve Magill Argonne National Laboratory Multi-jet Events at the ILC PFA Approach PFA Goals PFA Requirements on ILC.
Summary of Simulation and Reconstruction Shaomin CHEN (Tsinghua University)  Framework and toolkit  Application in ILC detector design Jupiter/Satellites,
Event Reconstruction in SiD02 with a Dual Readout Calorimeter Detector Geometry EM Calibration Cerenkov/Scintillator Correction Jet Reconstruction Performance.
Pion Showers in Highly Granular Calorimeters Jaroslav Cvach on behalf of the CALICE Collaboration Institute of Physics of the ASCR, Na Slovance 2, CZ -
PFA Template Concept Performance Mip Track and Interaction Point ID Cluster Pointing Algorithm Single Particle Tests of PFA Algorithms S. Magill ANL.
Development of a Particle Flow Algorithms (PFA) at Argonne Presented by Lei Xia ANL - HEP.
1 Calorimetry Simulations Norman A. Graf for the SLAC Group January 10, 2003.
UTA GEM DHCAL Simulation Jae Yu * UTA DoE Site Visit Nov. 13, 2003 (*On behalf of the UTA team; A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee,
PFAs – A Critical Look Where Does (my) SiD PFA go Wrong? S. R. Magill ANL ALCPG 10/04/07.
Bangalore, India1 Performance of GLD Detector Bangalore March 9 th -13 th, 2006 T.Yoshioka (ICEPP) on behalf of the.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
1 D.Chakraborty – VLCW'06 – 2006/07/21 PFA reconstruction with directed tree clustering Dhiman Chakraborty for the NICADD/NIU software group Vancouver.
Particle-flow Algorithms in America Dhiman Chakraborty N. I. Center for Accelerator & Detector Development for the International Conference.
Particle Flow Review Particle Flow for the ILC (Jet) Energy Resolution Goal PFA Confusion Contribution Detector Optimization with PFAs Future Developments.
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
Calice Meeting Argonne Muon identification with the hadron calorimeter Nicola D’Ascenzo.
1 IWLC 2010 Geneva Oct.’10David Ward Tests of GEANT4 using the CALICE calorimeters David Ward  Electromagnetic particles (, e) were used to understand.
7/13/2005The 8th ACFA Daegu, Korea 1 T.Yoshioka (ICEPP), M-C.Chang(Tohoku), K.Fujii (KEK), T.Fujikawa (Tohoku), A.Miyamoto (KEK), S.Yamashita.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
Imaging Hadron Calorimeters for Future Lepton Colliders José Repond Argonne National Laboratory 13 th Vienna Conference on Instrumentation Vienna University.
The PFA Approach to ILC Calorimetry Steve Magill - ANL Calorimeter R&D Review LCWS DESY May 31, 2007 Multi-jet Events at the ILC PFA Approach PFA Goals.
DESY1 Particle Flow Calorimetry At ILC Experiment DESY May 29 th -June 4 rd, 2007 Tamaki Yoshioka ICEPP, Univ. of Tokyo Contents.
Energy Reconstruction in the CALICE Fe-AHCal in Analog and Digital Mode Fe-AHCal testbeam CERN 2007 Coralie Neubüser CALICE Collaboration meeting Argonne,
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Intelligent Norman Graf, Steve Magill, Steve Kuhlmann, Ron Cassell, Tony Johnson, Jeremy McCormick SLAC & ANL CALOR ‘06 June 9, 2006 DesignDetector.
PFA Study with Jupiter Contents : 1. Introduction 2. GLD-PFA
SiD Calorimeter R&D Collaboration
Dual Readout Clustering and Jet Finding
CALICE scintillator HCAL
slicPandora: slic + pandoraPFANew
Studies with PandoraPFA
Calorimetry for a CLIC experiment
State-of-the-art in Hadronic Calorimetry for the Lepton Collider
Track Extrapolation/Shower Reconstruction in a Digital HCAL
Individual Particle Reconstruction
EFA/DHCal development at NIU
Linear Collider Simulation Tools
Simulating the Silicon Detector
Simulation study for Forward Calorimeter in LHC-ALICE experiment
Project Presentations August 5th, 2004
Rick Salcido Northern Illinois University For CALICE Collaboration
Argonne National Laboratory
Detector Optimization using Particle Flow Algorithm
Linear Collider Simulation Tools
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Sheraton Waikiki Hotel
Presentation transcript:

1 Individual Particle Reconstruction CHEP07, Victoria, September 6, 2007 Norman Graf (SLAC) Steve Magill (ANL)

2 Precision Physics at the ILC e + e - : ~background-free but can contain complex multi-jet events Includes final states with heavy bosons W, Z, H Statistics limited so must include hadronic decay modes (~80% BR)  multi-jet events In general no kinematic fits  full event reconstruction ZHH

3 Individual Particle Reconstruction The aim is to reconstruct individual particles in the detector with high efficiency and purity. Recognizing individual showers in the calorimeter is the key to achieving high di-jet mass resolution. High segmentation favored over compensation. Loss of intrinsic calorimeter energy resolution is more than offset by the gain in measuring charged particle momenta. Use this approach to design complete detector with best overall performance/price.

4 Overview 1 to 1 correspondence between measured detector objects and particle 4-vectors Detector Jet == Particle Jet Combines tracking and 3-D imaging calorimetry Excellent tracking efficiency & momentum resolution for charged particles (~60% of jet E) –  p (tracking) <<<  E for photons or hadrons in CAL Good EM Calorimetry for photon measurement (~25% of jet E) –  E for photons <  E for neutral hadrons Good separation of neutral and charged showers in E/HCAL – CAL objects == particles –1 particle : 1 object  small CAL cells Adequate E resolution for neutrals in HCAL (~13% of jet E) –  E < minimum mass difference, e.g. M Z – M W – still largest contribution to jet E resolution

5 fluctuations Jet Energy Resolution – “Perfect” PFA A  = 15% ; A h0 = 35% =>  (E jet )/E jet = 15%/  E jet A  = 15% ; A h0 = 60% =>  (E jet )/E jet = 23%/  E jet

6 Calorimeter Segmentation Highly segmented calorimeters constructed of materials which induce compact shower size are necessary. Si-W default for electromagnetic calorimeter. –20-40 layers,.01 – 1 cm 2 transverse cells Steel, Tungsten, Lead for HCal –30-50 layers, 1 – 9 cm 2 transverse cells Need high segmentation to minimize the number of cells receiving energy deposits from more than one initial particle.

7 Occupancy Event Display tt  six jets All Calorimeter Hits Hits with more than one Monte Carlo particle

8 Scintillator No timing or threshold cutRPC Not sensitive to neutrons! Readout

9 Digital HCAL? Analog linearityDigital linearity GEANT 4 Simulation of Si Detector (5 GeV  + ) -> sum of ECAL and HCAL analog signals - Analog -> number of hits with 1/3 mip threshold in HCAL - Digital AnalogDigital Landau Tails + path length Gaussian  /mean ~22%  /mean ~19% E (GeV)Number of Hits

10 Detector models Calorimeters drive the whole detector design! Using Si-W as default electromagnetic calorimeter. Investigating several hadronic calorimeter designs Absorbers Readouts Steel RPC Tungsten Scintillator Lead GEM Varying inner radius of barrel, aspect ratio to endcap, strength of B Field, readout segmentation.

11 SiD LDC GLD 5 Tesla B-field Si Strip/Disks Tracking W/Si ECAL, IR = 125 cm SS/RPC Digital HCAL PFA-Motivated Detector Models 3 Tesla B-field TPC Tracking W/Scin ECAL, IR = 210 cm Pb/Scin Analog HCAL 4 Tesla B-field TPC Tracking W/Si ECAL, IR = 160 cm SS/Scin Analog HCAL Radius B-field a la T. Yoshioka Common features : Large B-field (3-5 Tesla) with calorimeter inside -> Suppresses beam backgrounds in detector -> Separates charged hadrons State-of-the-Art tracking (TPC, Si-Strips) Dense (W), fine-grained (Si pixels, Scin strips) ECAL Highly granular and segmented HCAL (SS, Pb, W) digital (gas) and analog (scintillator) readouts Muon Systems outside of coil

12 Reconstruction Strategy Track-linked mip segments –Find mip hits on extrapolated tracks, determine layer of first interaction based solely on cell density (no clustering of hits) (   candidates) Photon Finder –Nearest Neighbor clustering (with local equivalence relations) of EM Cal hits –Analytic longitudinal H-matrix fit to layer E profile with ECAL clusters as input, transverse moment analysis, track match, E/p (  ,  0, e +/- candidates) Track-linked EM and HAD clusters –substitute for Cal objects (mips + ECAL shower clusters + HCAL shower clusters), reconstruct linked mip segments + clusters iterated in E/p –Analog or digital techniques in HCAL (   +/- candidates) Neutral Finder algorithm –cluster remaining CAL cells, merge, cut fragments (  n, K 0 L candidates) Jet algorithm –Reconstructed Particles used as input to jet algorithm, further analysis

GeV K+ 4.9 GeV p 6.9 GeV  GeV  GeV  1.9 GeV  1.6 GeV  3.2 GeV  0.1 GeV  0.9 GeV  0.2 GeV  0.3 GeV  0.7 GeV  8.3 GeV n 2.5 GeV K L 0 _ 1.9 GeV  3.7 GeV  3.0 GeV  5.5 GeV  1.0 GeV  2.4 GeV  1.3 GeV  0.8 GeV  3.3 GeV  1.5 GeV  1.9 GeV  GeV  GeV  GeV  GeV n 2.8 GeV n _ Mip trace/IL Photon Finding Track-mip-shower Assoc.Neutral Hadrons Overall Performance : ~33%/  E central Z Reconstruction Demonstration

14 Reconstruction Framework Analysis shown here done within the general ALCPG simulation & reconstruction environment. Framework exists for the full reconstruction chain which allows modular implementation of most aspects of the analysis. Interfaces allow different clustering algorithms to be swapped in and alternate strategies to be studied. Goal is to facilitate cooperative development and reduce time & effort between having an idea and seeing the results.

15 Simulations & Test Beams Results are very sensitive not only to the reconstruction algorithms but to the shower simulations as well. Need data! “thick” target data – Calorimeter prototypes –Enable shower model Comparisons “thin” target data – e.g. MIPP –produce particle production differential cross sections vs energy, angle, etc. –Needed to tune the shower models themselves.

16 Hadron Shower Transverse Size Number of issues still unresolved with choice (or not) of showering models. For many neutral hadrons LHEP (Gheisha-inspired) is only choice. Transition regions still worrisome. Energy (GeV) Transverse distance containing 90% of hits Scintillator RPC

17 Summary Jet reconstruction will be crucial to our understanding of physics at the ILC. To live up to its potential as a precision instrument for the physics of the future, an ILC detector must include hadronic decays of massive particles in physics analyses as well as leptonic modes The PFA approach to jet reconstruction is seen as a way to use the components of an ILC detector in an optimal way, achieving unprecedented mass resolution from dijet reconstruction. PFA development is an R&D project itself, and much progress has been made in efforts parallel to those in detector hardware. PFAs are beginning to show that they do, indeed, result in much improved jet reconstruction for simulated events and jets that are expected at the ILC. Dependencies on various detector parameters are now being studied, which will ultimately influence our choice of technologies for ILC detector component design – in particular the calorimeters.

18 Conclusions Unambiguous separation of charged and neutral hadron showers is the crux of this approach to detector design. –hadron showers NOT well described analytically, fluctuations dominate # of hits, shape –also investigating highly-segmented compensating calorimeter designs. Calorimeters designed for optimal 3-D shower reconstruction : –granularity << shower transverse size –segmentation << shower longitudinal size Critically dependent on correct simulation of hadronic showers –Investing a lot of time and effort understanding & debugging Geant4 models. –Timely test-beam results crucial to demonstration of feasibility. Full Simulations + Reconstruction  ILC detector design –Unique approach to calorimeter design –Ambitious and aggressive approach, strong desire to do it right. –Flexible simulation & reconstruction package allows fast variation of parameters.

19 From Hits to Reality

20 What’s the reality here?

Additional Information ILC Detector Simulation ILC Forum Wiki JAS3 WIRED4 AIDA