XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Lesson #3 Higgs boson searches at LEP1, LEP2 Standard Model.

Slides:



Advertisements
Similar presentations
Final State QCD LEP, part 2 Nuno Anjos LIP, Lisbon – DELPHI and L3 Collaborations EPS HEP05 Lisboa, Portugal July 22 nd, a) Single Particle.
Advertisements

Martin zur Nedden, HU Berlin 1 WS 2007/08: Physik am LHC 5. Higgs Searches The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production:
Discovery of a standard model Higgs boson using vector boson fusion at the LHC Craig Buttar University of Sheffield Collaborators: G.Azuelos, V.Cavasinni,
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
Higgs physics theory aspects experimental approaches Monika Jurcovicova Department of Nuclear Physics, Comenius University Bratislava H f ~ m f.
1 Higgs Mechanism Cyril Topfel. 2 What to expect from this Presentation (Table of Contents) Some very limited theory explanation Higgs at.
Investigation on Higgs physics Group Ye Li Graduate Student UW - Madison.
Current limits (95% C.L.): LEP direct searches m H > GeV Global fit to precision EW data (excludes direct search results) m H < 157 GeV Latest Tevatron.
XXVII Ph.D in Physics Ezio TorassaPadova, March 16 th 2012 Lesson #3 Higgs boson searches at LEP1, LEP2 and LHC Standard Model.
The elusive agent of electroweak symmetry breaking - an experimentalist point of view - Ulrich Heintz Brown University.
Recent Results on the Possibility of Observing a Standard Model Higgs Boson Decaying to WW (*) Majid Hashemi University of Antwerp, Belgium.
CDF でのWH  lνbb チャンネルを用い た ヒッグス粒子探索 Outline Introduction Analysis & Current Upper Limit on WH Conclusion & Tevatron Results 増渕 達也 筑波大学 February 21 th 2007.
Higgs Searches using Vector Boson Fusion. 2 Why a “Low Mass” Higgs (1) M H
Visible and Invisible Higgs Decays at 350 GeV Mark Thomson University of Cambridge =+
Summary of Results and Projected Sensitivity The Lonesome Top Quark Aran Garcia-Bellido, University of Washington Single Top Quark Production By observing.
1 Rutherford Appleton Laboratory The 13th Annual International Conference on Supersymmetry and Unification of the Fundamental Interactions Durham, 2005.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Top Physics at the Tevatron Mike Arov (Louisiana Tech University) for D0 and CDF Collaborations 1.
Higgs Searches at LEP2 E. Kneringer University of Innsbruck / Austria Collaboration LAKE LOUISE WINTER INSTITUTE Electroweak Physics February 1999.
Introduction to Single-Top Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) The measurement.
WW  e ν 14 April 2007 APS April Meeting WW/WZ production in electron-neutrino plus dijet final state at CDFAPS April Meeting April 2007 Jacksonville,
1 Viktor Veszprémi (Purdue University, CDF Collaboration) SUSY 2005, Durham Search for the SM Higgs Boson at the CDF Experiment Search for the SM Higgs.
8. Hypotheses 8.2 The Likelihood ratio at work K. Desch – Statistical methods of data analysis SS10.
Single boson production at LEP Guillaume Leibenguth On behalf of the LEP experiments Institut de physique nucléaire Université catholique de Louvain DIS’04,
SM and Susy Higgs searches at LEP Magali GRUWÉ CERN QFTHEP Workshop, September 2001.
Search for the Standard Model Higgs boson with the CMS detector Tommaso Dorigo (INFN and University of Padova) for the CMS collaboration The Large Hadron.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
1 ZH Analysis Yambazi Banda, Tomas Lastovicka Oxford SiD Collaboration Meeting
H → ZZ →  A promising new channel for high Higgs mass Sara Bolognesi – Torino INFN and University Higgs meeting 23 Sept – CMS Week.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
Higgs Properties Measurement based on HZZ*4l with ATLAS
L. Bellagamba, Excited fermions and other searches at HERA 1 International Conference on High Energy Physics Amsterdam July 2002 Excited fermions.
1 HEP 2008, Olympia, Greece Ariadni Antonaki Dimitris Fassouliotis Christine Kourkoumelis Konstantinos Nikolopoulos University of Athens Studies for the.
Sensitivity Prospects for Light Charged Higgs at 7 TeV J.L. Lane, P.S. Miyagawa, U.K. Yang (Manchester) M. Klemetti, C.T. Potter (McGill) P. Mal (Arizona)
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
Moriond QCD 2001Enrico Piotto EP division CERN SM Higgs Search at LEP in Channels other than 4 Jets Enrico Piotto EP Division, CERN SM Higgs Search at.
DPF2000, 8/9-12/00 p. 1Richard E. Hughes, The Ohio State UniversityHiggs Searches in Run II at CDF Prospects for Higgs Searches at CDF in Run II DPF2000.
Higgs Reach Through VBF with ATLAS Bruce Mellado University of Wisconsin-Madison Recontres de Moriond 2004 QCD and High Energy Hadronic Interactions.
1 EPS2003, Aachen Nikos Varelas ELECTROWEAK & HIGGS PHYSICS AT DØ Nikos Varelas University of Illinois at Chicago for the DØ Collaboration
INCLUSIVE STANDARD MODEL HIGGS SEARCHES HIGGS SEARCHES WITH ATLAS Francesco Polci LAL Orsay On behalf of the ATLAS collaboration. SUSY08 – Seoul (Korea)
Search for the Higgs boson in H  ZZ (*) decay modes on ATLAS German D Carrillo Montoya, Lashkar Kashif University of Wisconsin-Madison On behalf of the.
Second IDPASC school Ezio TorassaUdine, February 1 st 2012 LHC Physics Lesson #2 Higgs boson searches at LEP1, LEP2 and LHC IDPASC school.
Higgs self coupling Djamel BOUMEDIENE, Pascal GAY LPC Clermont-Ferrand.
Projected Exclusion Limits on the SM Higgs Boson Cross Section by Combining Higgs Channels at LHC Tommaso Dorigo (INFN and University of Padova) for the.
Study of pair-produced doubly charged Higgs bosons with a four muon final state at the CMS detector (CMS NOTE 2006/081, Authors : T.Rommerskirchen and.
Lake Louise (February 2002) Ivo van Vulpen 1 Z boson pair production Ivo van Vulpen Outline: LEP and its operation between ZZ production & final.
By Henry Brown Henry Brown, LHCb, IOP 10/04/13 1.
Flavour independent neutral Higgs boson searches at LEP Ivo van Vulpen NIKHEF On behalf of the LEP collaborations EPS conference 2005.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
ALEPH Status Report LEPC - July Gary Taylor, UC Santa Cruz SM processes Higgs searches SUSY searches.
Particle Physics II Chris Parkes Top Quark Discovery Decay Higgs Searches Indirect mW and mt Direct LEP & LHC searches 2 nd Handout.
Vanina Ruhlmann-Kleider DAPNIA/SPP (Saclay) V.Ruhlmann-KleiderPhysics at LHC, Praha Review of Higgs boson searches at LEP Introduction The SM Higgs.
EPS03 Aachen 4f at LEP2 Maurizio Bonesini 4f Final States and Photoproduction at LEP2 Maurizio Bonesini Sezione INFN Milano ( Dipartimento di Fisica G.
Search for the Standard Model Higgs in  and  lepton final states P. Grannis, ICHEP 2012 for the DØ Collaboration Tevatron, pp √s = 1.96 TeV -
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
Stano Tokar, slide 1 Top into Dileptons Stano Tokar Comenius University, Bratislava With a kind permissison of the CDF top group Dec 2004 RTN Workshop.
Search for H  WW*  l l Based on Boosted Decision Trees Hai-Jun Yang University of Michigan LHC Physics Signature Workshop January 5-11, 2008.
EPS Manchester Daniela Bortoletto Associated Production for the Standard Model Higgs at CDF D. Bortoletto Purdue University Outline: Higgs at the.
Backup slides Z 0 Z 0 production Once  s > 2M Z ~ GeV ÞPair production of Z 0 Z 0 via t-channel electron exchange. e+e+ e-e- e Z0Z0 Z0Z0 Other.
Viktor Veszpremi Purdue University, CDF Collaboration Tev4LHC Workshop, Oct , Fermilab ZH->vvbb results from CDF.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Suyong Choi (SKKU) SUSY Standard Model Higgs Searches at DØ Suyong Choi SKKU, Korea for DØ Collaboration.
A Search for Higgs Decaying to WW (*) at DØ presented by Amber Jenkins Imperial College London on behalf of the D  Collaboration Meeting of the Division.
1 Donatella Lucchesi July 22, 2010 Standard Model High Mass Higgs Searches at CDF Donatella Lucchesi For the CDF Collaboration University and INFN of Padova.
Bounds on light higgs in future electron positron colliders
Venkat Kaushik, Jae Yu University of Texas at Arlington
Experimental Particle PhysicsPHYS6011 Performing an analysis Lecture 5
Jessica Leonard Oct. 23, 2006 Physics 835
Measurement of the Single Top Production Cross Section at CDF
Northern Illinois University / NICADD
Presentation transcript:

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Lesson #3 Higgs boson searches at LEP1, LEP2 Standard Model

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Higgs searches at LEP Z Z* H H Z E CM =206 GeV The coupling of the Higgs field to the vectorial bosons and fermions it’s fully defined in the Standard Model The cross section of the Higgs production and the decay modes as a function of it’s mass are predicted by the theory

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Higgs-strahlungWW fusion Dominant mode m(H)   s-m(Z) + interference M H (GeV/c 2 ) E CM =206 GeV The dominating Higgs production mechanism at LEP1 and LEP2 is the “Higgs-strahlung”

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Higgs decay channels For m H  120 GeV, the most important decay chanel is H  bb “b-tagging” is relevant ! 4 jets 2 jets & missing energy 19% 60% Or a   instead of the b 2 jet & 2 lepton 6% H  bb 85% H  8% Reaserch topology:

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Padova 12 Aprile 2011 Ezio Torassa Neutrino decay channel 2 jets & missing energy The signature is one unbalanced hadronic event. The background is due to Z decay into b quarks Background reduction: invariant mass of the two jets  M Z jets not in collinear directions b-tagging Leptons transverse momentum b c uds Tracks impact parameters uds c b Higgs searches at LEP1

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 (1) Preselection: Acollinearity > GeV < M invariant < 70 GeV Z  qq Z H (55GeV)  X Eff. ( Z H  X) = 81.2% Eff. (Z  qq) = 1.5 % (2) Neural network: Neural network with 15 input variables. The output is a single quality variables: Q takes values between 0 and 1 Data analysis example ( ) Q ( ) Z H  X Z  qq Eff. ( Z H  X) = 65.8% Eff. (Z  qq) = 0.23 % Q > 0.95 ( to be multiplied with the previous Eff. )

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Results M H (GeV) Eventi (simulati HZ) 7.9     0.05 # expected signal events # observed events: 0 # expected background events : 0 Sum of the tree decay channels: Z  Z  ee Z  For M H = 55.7 GeV we have 3 expected signal events events. The expected number of event is a mean number ( =3) with a Poisson distribution: The probability to observe 0 events is 5%. =3

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 For M H larger than 55.7 GeV the probability to observe zero events il smaller than 5%. Your confidence level is 95%. Higgs mass limit: M H > 55.7 GeV al 95 % di C.L. LEP1 : detectors, all channels m(Higgs) > 65 GeV /c 2 at 95%CL DELPHI : 1 M hadronic events ~380 k events ee  LEP M hadronic events

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Large number of events  Gauss distribution approximation Small number of events  Poisson distribution n = number of observed events m = mean number of events Contributions to the mean value : background (b) and signal (s) : n is the measurement; Exclusion (at least at 95% CL): the probability to observe n events  5% Discovery (5  significance): signal 5 times larger than the error Exclusion and discovery

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 EXCLUSION The observed small number of events could be due to a statistical fluctuation with prob.  5×10 -2 DISCOVERY The observed large number of events could be due to a statistical fluctuation with prob.  5.7×10 -5 L exclusion Increasing the Integrated luminosity the background uncertainty decreases. When the difference between background and background+signal is 2  the Luminosity for the exclusion is reached. L discovery Similar definition for the discovery Really observe n events and expect to observe n events at a given luminosity is not the same. At the exclusion (or discovery) Luminosity the probability to reach the goal is 50%

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Significance When the background b can be precisely estimated The inclusion of the background error  b with a Gaussian distribution needs a specific calculation, with the Gaussian approximation for the number of events n the significance can be expressed with the following relation: With high statistics, for few units of significance, the denominator is only √b

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 With a large number of observed events (n>>  n), the statistical fluctuations do not have a big impact in the final result; for small numbers is the opposite: small changes in the selection can produce big differences (i.e. 0 evts  2 evts) None is “neutral”, good arguments can be found to modify a little bit the cuts to obtain a sensible change of the final result; The selection criteria must be defined a priori with the MC to optimize the signal significance, only at the end we can open the box and look the impact on the real data. This method is called “blind analysis”. The “blind analysis”

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Higgs searches at LEP II MHMH E CM =206 GeV The “Higgs-strahlung” is dominant production also at LEP II. At higher  s - the diboson fusion increas the relative relevance; - higher Higgs masses can be produced.

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Higgs decay channels at LEP II The most relevant decay channel is H  bb like at LEP I Over 115 GeV (LHC region) other decay channels (WW e ZZ) becames relevant or dominant 4 jets 2 jets & missing energy 19% 60% Or a   instead of the b 2 jet & 2 lepton 6% H  bb 85% H  8% Research topology: LEP I LEP II

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 e+e+ f’ e-e- f ZZ   W +, Z,  e+e+,e e-e- W -, Z,  e+e+ H e-e- Z ZZ e+e+ - e-e- W+W+ W-W- H  In addition to Z  ff we have also the WW, ZZ and  production and decays. e+e+ e-e- e+e+  e-e-  q q e + e - → e + e - qq

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 m H =100 GeV Invariant mass distribution for MC and real data. m H =115 GeV Final LEP selections for 115 GeV search (Loose and Tight)

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Statistic approach for the global combination We need to combine the results from different channels (Hqq, H, Hll) and different energies E cm. They are grouped in the same two-dimensional space (m H rec, G) m H rec reconstruced invariant mass G discrimanant variable (Q NN, b-tag) For every k channel we obtain: - b k estimanted background - s k estimated signal (related to m H ) - n k number of Higgs candidate from the real data We build the Likelihood for two hypothesis: - candidates coming from signal + background L s+b - candidates coming from background L b m H rec G

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 We want to discriminate the number of observed events (n) w.r.t. the mean number of expected signal plus background (b+s) or only background (b) The following is the probability for b+s, s is a function related to m H : The Likelihood is the product of the probability density (k channel density)

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 The comparison between the two hypothesis is provided by the Likelihood ratio. We choose to describe the results with the log of the ratio because it provides the  2 difference : We look to the function -2ln(Q(m H )) (i)For the real data (ii)For the MC with n=b (iii) For the MC with n=b+s

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 green: 1  from the backgroundyellow: 2  from the background background (higher  2 for b+s) signal+background (higher  2 for b)

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 m H > GeV/c 2 at 95% CL s Finally we can estimate the exclusion at 95% of confidence level (CL s = CL s+b / CL b ) Over 114 GeV/c2 the real data line (red) is closer the the s+b line (brown) anyway the real data line is always (every m H ) within 2  from the background line LEP I m H > 65 GeV/c 2 LEP II m H > GeV/c 2

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 The “window” for M Higgs GeV 171 GeV This exclusion window is at 95% of C.L., masses outside this window are not forbidden, they have a smaller probability

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014

XXIX Ph.D in Physics Ezio TorassaPadova, May 9th 2014 Higgs searches at LEP I : Z Physics at LEP I CERN Vol 2 – Higgs search (pag. 58) Search for the standard model Higgs boson in Z decays – Nucl Physics B 421 (1994) 3-37 Higgs searches at LEP II : Search for the Standard Model Higgs Boson at LEP – CERN-EP/