Influence of gate capacitance on CNTFET performance using Monte Carlo simulation H. Cazin d'Honincthun, S. Retailleau, A. Bournel, P. Dollfus, J.P. Bourgoin*

Slides:



Advertisements
Similar presentations
Chapter 2-4. Equilibrium carrier concentrations
Advertisements

Agenda Semiconductor materials and their properties PN-junction diodes
Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider
LaB6 Scanning Electron Source
CNT devices Since their first discovery and fabrication in 1991, CNTs have received considerable attention because of the prospect of new fundamental science.
Is Dual Gate Device Structure Better From a Thermal Perspective? D. Vasileska, K. Raleva and S. M. Goodnick Arizona State University Tempe, AZ USA.
MOS – AK Montreux 18/09/06 Institut dÉlectronique du Sud Advances in 1/f noise modeling: 1/f gate tunneling current noise model of ultrathin Oxide MOSFETs.
Reference Bernhard Stojetz et al. Phys.Rev.Lett. 94, (2005)
Electrical Engineering 2
1 Chapter 5-1. PN-junction electrostatics You will also learn about: Poisson’s Equation Built-In Potential Depletion Approximation Step-Junction Solution.
EXCITON-PLASMON COUPLING AND BIEXCITONIC NONLINEARITIES IN INDIVIDUAL CARBON NANOTUBES Igor Bondarev Physics Department North Carolina Central University.
Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.
Green Transistor for 10X Lower IC Power ?
Number bonds to 10,
Comparison among modeling approaches for gate current computation in advanced gate stacks ARCES: N.Barin, C.Fiegna, E.Sangiorgi BU: P.A.Childs FMNT-CNRS:
Multisubband Monte Carlo simulations for p-MOSFETs David Esseni DIEGM, University of Udine (Italy) Many thanks to: M.De Michielis, P.Palestri, L.Lucci,
Lecture #5 OUTLINE Intrinsic Fermi level Determination of E F Degenerately doped semiconductor Carrier properties Carrier drift Read: Sections 2.5, 3.1.
Nanostructures Research Group Center for Solid State Electronics Research Quantum corrected full-band Cellular Monte Carlo simulation of AlGaN/GaN HEMTs.
Simulations of sub-100nm strained Si MOSFETs with high- gate stacks
1 Analysis of Strained-Si Device including Quantum Effect Fujitsu Laboratories Ltd. Ryo Tanabe Takahiro Yamasaki Yoshio Ashizawa Hideki Oka
Comparison of Non-Equilibrium Green’s Function and Quantum-Corrected Monte Carlo Approaches in Nano MOS Simulation H. Tsuchiya A. Svizhenko M. P. Anantram.
International Workshop of Computational Electronics Purdue University, 26 th of October 2004 Treatment of Point Defects in Nanowire MOSFETs Using the Nonequilibrium.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Quantum Transport in Ultra-scaled.
Xlab.me.berkeley.edu Xlab Confidential – Internal Only EE235 Carbon Nanotube FET Volker Sorger.
The metal-oxide field-effect transistor (MOSFET)
Full-band Simulations of Band-to-Band Tunneling Diodes Woo-Suhl Cho, Mathieu Luisier and Gerhard Klimeck Purdue University Investigate the performance.
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
© 2010 Eric Pop, UIUCECE 598EP: Hot Chips Nanoelectronics: –Higher packing density  higher power density –Confined geometries –Poor thermal properties.
INAC The NASA Institute for Nanoelectronics and Computing Purdue University Circuit Modeling of Carbon Nanotubes and Their Performance Estimation in VLSI.
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
*F. Adamu-Lema, G. Roy, A. R. Brown, A. Asenov and S. Roy
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
ICECS, Athens, December /18 From nanoscale technology scenarios to compact device models for ambipolar devices Sébastien Frégonèse, Cristell Maneux,
Three-dimensional quantum transport simulation of ultra-small FinFETs H. Takeda and N. Mori Osaka University.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
Investigation of Performance Limits of Germanium DG-MOSFET Tony Low 1, Y. T. Hou 1, M. F. Li 1,2, Chunxiang Zhu 1, Albert Chin 3, G. Samudra 1, L. Chan.
Modeling, Characterization and Design of Wide Bandgap MOSFETs for High Temperature and Power Applications UMCP: Neil Goldsman Gary Pennington(Ph.D) Stephen.
Scaling of the performance of carbon nanotube transistors 1 Institute of Applied Physics, University of Hamburg, Germany 2 Novel Device Group, Intel Corporation,
1 Recent studies on a single-walled carbon nanotube transistor Reference : (1) Mixing at 50GHz using a single-walled carbon nanotube transistor, S.Rosenblatt,
UPoN Lyon 2008 G. Albareda 1 G.Albareda, D.Jimenez and X.Oriols Universitat Autònoma de Barcelona - Spain E.mail: Can analog and.
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
Influence of carrier mobility and interface trap states on the transfer characteristics of organic thin film transistors. INFM A. Bolognesi, A. Di Carlo.
Special Issues on Nanodevices1 Special Topics in Nanodevices 3 rd Lecture: Nanowire MOSFETs Byung-Gook Park.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
F ORSAY cedex FRANCE J. SAINT MARTIN, V. AUBRY-FORTUNA, A. BOURNEL, P. DOLLFUS, S. GALDIN, C. CHASSAT Influence Of Ballistic.
IEE5328 Nanodevice Transport Theory
Scattering Rates for Confined Carriers Dragica Vasileska Professor Arizona State University.
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Performance Predictions for Carbon Nanotube Field-Effect Transistors
Quantum Interference in Multiwall Carbon Nanotubes Christoph Strunk Universität Regensburg Coworkers and Acknowledgements: B. Stojetz, Ch. Hagen, Ch. Hendlmeier.
Quantum Capacitance Effects In Carbon Nanotube Field-Effect Devices
THE KONDO EFFECT IN CARBON NANOTUBES
Nano-Electronics and Nano- technology A course presented by S. Mohajerzadeh, Department of Electrical and Computer Eng, University of Tehran.
Analysis of Strain Effect in Ballistic Carbon Nanotube FETs
Graphene Transistors for Microwave Applications and Beyond Mahesh Soni1, Satinder Kumar Sharma1, Ajay Soni2 1School.
Semiconductor Device Modeling
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Contact Resistance Modeling in HEMT Devices
Novel Scattering Mechanisms for Nanotube-Silicon Devices
Introduction to Nanoheat; Aspel group
Lecture #5 OUTLINE Intrinsic Fermi level Determination of EF
Long Channel MOS Transistors
Band-structure calculation
Strained Silicon MOSFET
Nonequilibrium Green’s Function with Electron-Phonon Interactions
Carbon Nanotube Diode Design
Long Channel MOS Transistors
Presentation transcript:

Influence of gate capacitance on CNTFET performance using Monte Carlo simulation H. Cazin d'Honincthun, S. Retailleau, A. Bournel, P. Dollfus, J.P. Bourgoin* UPS Institut d'Electronique Fondamentale (IEF) UMR 8622 – CNRS-Université Paris Sud 11, Orsay, France *Laboratoire d’électronique moléculaire, CEA/DSM/DRECAM/SPEC, CEA Saclay, France

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Plan  Carbon nanotubes: high potential material  Carbon nanotubes: Model for calculations (Monte Carlo)  Evaluation of Mean Free Path  Carbon nanotube field effect transistor simulation

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Potentialities of Carbon nanotubes Charge transport and confinement Charge transport is quasi-ballistic: few interactions Charge confinement (1D): good control of electrostatics Band structure « quasi » symmetric Transport properties identical for electron and hole (same m*) Carbon nanotubes can be either metallic as well as semi-conducting All-nanotube-based electronic is possible No dangling bonds Possibility to use High K material for oxide

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Plan  Carbon nanotubes: high potential material  Carbon nanotubes: Model for calculations (Monte Carlo)  Evaluation of Mean Free Path  Carbon nanotube field effect transistor simulation

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Particle Monte-Carlo method Carrier trajectories: Succession of free flight and scattering events Study of carrier transport in this work: solving the Boltzmann equation by the Monte Carlo method electron Statistical solution :by Monte Carlo method  assembly of individual particles 1 particle  N particles allow us to reconstruct scattering rates - time of free flights t f - type of scattering i - effect of scattering (  E,  ) (Monte Carlo algorithm) random selection of

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Band structure and phonons  E 12 E G /2 subbands 1 subbands 2 subbands 3 Energy dispersion calculated by: Tight-binding Zone-folding Phonon dispersion curves calculated by zone folding method Analytical approximation of dispersion curves [Pennington, Phys. Rev. B 68, (2003)]  Longitudinal acoustic and optical modes are considered as dominant like in graphene Analytical approximation of the three first subbands Analytical approximation of the three first subbands Approximation + RBM phonon (E RBM ≈ Cst./d t ) [M. Machon et al., Phys. Rev. B 71, , (2005)] Ex: Tube index n=19, E RBM =19 meV

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Scattering Events Calculation  Scattering rates : 1st order Perturbation Theory by deformation potential model with: D aco = 9 eV [L. Yang, M.P. Anantram et al. Phys. Rev. B 60, (1999) ] D RBM = 0.65eV/cm (for n = 19) [M. Machon et al., PRB 71, (2005)]  Intrasubband acoustic scattering Elastic process  Intersubband transition Inelastic process intravalley scattering from subband 1intervalley scattering from subband 1 n = 19

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Plan  Carbon nanotubes: high potential material  Carbon nanotubes: Model for calculations (Monte Carlo)  Evaluation of Mean Free Path  Carbon nanotube field effect transistor simulation

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Mean Free Path The mean free path depends on diameter and electric field :  l MFP = nm for elastic scattering  l MFP = nm for inelastic scattering Agreement with experimental works (L. field: nm H. Field: nm) Potential of quasi-ballistic transport in the low-field regime Simulation in steady-state regime

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Plan  Carbon nanotubes: high potential material  Carbon nanotubes: Model for calculations (Monte Carlo)  Evaluation of Mean Free Path  Carbon nanotube field effect transistor simulation

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS The modelled transistor Coaxially gated carbon nanotube transistor with heavily-doped source drain extensions CNTFET Characteristics: Zigzag tube (19,0) - d t = 1.5nm – E G = 0.55eV Cylindrically gated Ohmics Contacts (heavily n-doped) Intrinsic channel High K gate insulator HfO 2 ( EOT = 16, 1.4, 0.4, 0.1 nm - C OX = 72, 210, 560,1060 pF/m ) L c = 100 nm L = 20 nm e t = 0.18 nm d t = 1.5 nm EOT (nm) Oxide : HfO 2 SD N D = /m

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Conduction band First subband energy profile Weak field in the channel due to strong electrostatic gate control Weak field in the channel quasi ballistic transport

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Capacitive effects Determination of C G for low V DS : ≈ C G tends towards 4pF/cm Evolution of C ox and C G as a function of 1/EOT Reminder : C G leads towards C Q for C ox >> C Q For C ox >> C Q quantum capacitance limit Weak Field 1D low density of states Channel potential is fixed

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS I D -V GS Characteristics Expected result : I D increases with oxide capacitance C ox but limited enhancement for high C OX values Expected result : I D increases with oxide capacitance C ox but limited enhancement for high C OX values

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Evaluation of Ballistic Transport Unstrained Si. DG- MOSFET vs c-CNTFET CNTFET : 70% of ballistic electrons at the drain end for L ch = 100nm Unstrained Si DG : 50% of ballistic electrons pour L ch = 15 nm CNTFET : 70% of ballistic electrons at the drain end for L ch = 100nm Unstrained Si DG : 50% of ballistic electrons pour L ch = 15 nm

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS I D -V DS characteristics I ON ≈ 10 – 30 µA. I ON / I OFF ≈ – C OX (pF/m) /EOT(nm) 210/ / / 0.1 Expe.* 1.5 S (mV/dec) I ON (µA) g m (µS) High values of S and g m are obtained Acceptable agreement with experiments High values of S and g m are obtained Acceptable agreement with experiments Device parameters extracted from simulation (I off =0.1nA) * H. Dai, Nano Letter, vol.5, 345, (2005) : L=80nm, EOT=1.5nm V DD = 0.4V

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS I ON /I OFF ratio (V DD ) * H. Dai, Nano Letter, vol.5, 345, (2005) : L=80nm, EOT=1.5nm Performances CNT for L C =100nm and V DD <0.4V Performances Si for L C =15nm and V DD >0.7V Performances CNT for L C =100nm and V DD <0.4V Performances Si for L C =15nm and V DD >0.7V

Hugues Cazin d’Honincthun – URSI - 20/03/2007 UPS Conclusion This Monte Carlo simulation of a CNTFET shows excellent performances: Excellent electrostatic gate control (quantum capacitance regime) High fraction of ballistic electrons in the transistor channel High performances at relatively low power supply