Olaf Medenbach, Ruhr-Universität Bochum Atlas of Optical Crystallography Olaf Medenbach Institut für Geologie, Mineralogie und Geophysik Ruhr-Universität.

Slides:



Advertisements
Similar presentations
Interference figures Very important tool to determine optical characteristics. They will tell you: Uniaxial vs biaxial Optic sign 2V angle – for biaxial.
Advertisements

Appearance of crystals in microscope Crystal shape – how well defined the crystal shape is –Euhedral – sharp edges, well- defined crystal shape –Anhedral.
OPTICAL PROPERTIES OF ROCK FORMING MINERAL
Optical Mineralogy WS 2012/2013. Theory exam! ….possibilities in the last week of semester: Mo 4th February, 09:00-10:30 Do 7th February, 09:00-11:00.
Polarized Light. Polarizing Filters Natural Polarization.
Light ray overview Rays are split into 2 orthogonal rays (e and w) – these rays are slowed to different degrees (apparent birefringence, d related to the.
Olaf Medenbach, Ruhr-Universität Bochum Atlas of Optical Crystallography Olaf Medenbach Institut für Geologie, Mineralogie und Geophysik Ruhr-Universität.
Source of course material Dr. Olaf Medenbach, Ruhr-Universität Bochum Optical microscopy of rock-forming minerals, G. Wörner, USTC Hefei Compact Course.
Optical Mineralogy WS 2012/2013
Optical Mineralogy WS 2012/2013. The week before last…. l BIAXIAL INDICATRIX l EXTINCTION ANGLES.
Optical Mineralogy WS 2008/2009. Next week …. So far …. Light - properties and behaviour; Refraction - the refractive index (n) of minerals leads to.
Crystals and Symmetry. Why Is Symmetry Important? Identification of Materials Prediction of Atomic Structure Relation to Physical Properties –Optical.
Symmetry Elements II.
Atlas of Optical Crystallography
Cpx Oliv Oliv Oliv Cpx Biaxial Minerals Francis 2013 Cpx.
GEOL 3055 Morphological and Optical Crystallography JHSchellekens
Indicatrix Imaginary figure, but very useful
Birefringence and Interference
The Optical Indicatrix
Chapter 9 Optical Properties
Mineral color and pleochroism
Extinction Angle and Pleochroism
Lecture 16 (11/20/2006) Analytical Mineralogy Part 3: Optical Properties of Biaxial Minerals.
Raman Spectroscopy Spectrum is defined by: 1.position of the peaks 2.Intensity of the peaks Peak positions are a function of the force constants, and are.
Optical Mineralogy WS 2007/2008. Last week - Uniaxial interference figures without gypsum plate: same for (+) and (-) (+) with gypsum plate blue in I.
OPTICAL MINERALOGY TRIVIA ROUND 2!. Round 2 – Question 1 Under cross-polars, when will this mineral go to extinction?
Optical Mineralogy WS 2008/2009. Last week…. Indicatrix - 3-d representation of changing n in minerals (Z = biggest = slowest, X = smallest = fastest)
The Optical Indicatrix
Time for some new tricks: the optical indicatrix
Optical Mineralogy in a Nutshell
Atlas of Optical Crystallography
Isotropic vs Anisotropic
Lecture 11 Crystallography
Twinning GLY 4200 Twinning, 2012.
Source of course material Dr. Olaf Medenbach, Ruhr-Universit ä t Bochum Optical microscopy of rock-forming minerals, G. W ö rner, USTC Hefei Compact Course.
Interference Figures IN THIS LECTURE –Interference Figures –Taking Interference Figures –Uniaxial Interference Figures Optic Axis Interference Figure Off-Centre.
1 Optical Indicatrix GLY 4200 Fall, Geometrical Representation The idea of a geometrical representation of the variance of the index of refraction.
Review of Optical Mineralogy GEOL 5310 Advanced Igneous and Metamorphic Petrology 9/9/09.
Introduction to Mineralogy Dr
Chapter 10 - B Identification of minerals with the petrographic microscope.
1 Optical Mineralogy Lab 14 – Fall, 2012 Biaxial Interference Figures.
Interference Figures 1. Uniaxial Figures
Optical Mineralogy in a Nutshell
Optical Mineralogy in a Nutshell
Optical Properties of Minerals
Optical Mineralogy WS 2012/2013. Exam week…. l Final week of semester (4–8 February) l 3 hours at your normal Übung time l 1 hour theory, 2 hours practical.
GLG212 Part II, Lecture 1: Indicatrix and interference figures
Frequency = # of waves/sec to pass a given point (hz)
Are these all crystals? Why? A B DC Bell-Ringer 1 / 30.
Optical Mineralogy in a Nutshell Use of the petrographic microscope in three easy lessons Part III © Jane Selverstone, University of New Mexico, 2003 Used.
Crystal Forms
Optical Mineralogy in a Nutshell Use of the petrographic microscope in three easy lessons Part II © 2003 Prof. Jane Selverstone Used and modified with.
Optical Mineralogy in a Nutshell
Measuring Birefringence of Anisotropic Crystals
Light in Minerals II.
Time for some new tricks: the optical indicatrix
Optical Mineralogy in a Nutshell
Biaxial Interference Figures
Minerals Birefringence and Interference
Twinning GLY 4200 Fall, 2017.
Appearance of crystals in microscope
Optical Mineralogy in a Nutshell
Biaxial Crystals Orthorhombic, Monoclinic, and Triclinic crystals don't have 2 or more identical crystallographic axes The indicatrix is a triaxial ellipsoid.
Optical Indicatrix GLY 4200 Fall, 2017.
Feldspars.
Twinning GLY 4200 Fall, 2016.
Biaxial Interference Figures
NOTE: Symbolism In Schönflies notation, what does the symbol S2 mean?
Symmetry Elements II.
Twinning GLY 4200 Fall, 2018.
Presentation transcript:

Olaf Medenbach, Ruhr-Universität Bochum Atlas of Optical Crystallography Olaf Medenbach Institut für Geologie, Mineralogie und Geophysik Ruhr-Universität Bochum Bochum, Germany © by Olaf Medenbach Interference figures, part III: dispersion and symmetry

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m 2/m 2/m no distinctive dispersion, crystal orthorhombic, monoclinic or triclinic mirror planes m 2-fold axes

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m 2/m 2/m, orthorhombic crystal, strong dispersion of 2V, r>>v, cerussite, PbCO 3 m mirror planes 2-fold axes

Olaf Medenbach, Ruhr-Universität Bochum Dispersion of 2V Why are color effects in the 45° position reverse of the true axial dispersion? Melatopes (optic axes) for blue and red light Melatopes and isogyres for blue light (points of zero retardation and extinction, respectively, for blue light), remaining wavelengths combine to red Melatopes and isogyres for red light (points of zero retardation and extinction, respectively, for red light), remaining wavelengths combine to blue

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m 2/m 2/m orthorhombic crystal, crossed axial planes, brookite, TiO 2 m mirror planes 2-fold axes

Olaf Medenbach, Ruhr-Universität Bochum Dispersion of the Indicatrix in Orthorhombic Crystals crossed axial planes for blue and red light Brookite, TiO 2 optic plane for blue light: (010) uniaxial for green light optic plane for red light: (001)

Olaf Medenbach, Ruhr-Universität Bochum Brookite crossed axial planes for blue and red light The animation starts a few seconds after the next click.

Olaf Medenbach, Ruhr-Universität Bochum (010) (001) 420 nm440 nm460 nm480 nm500 nm520 nm540 nm560 nm580 nm600 nm620 nm640 nm660 nm680 nm Brookite crossed axial planes for blue and red light

Olaf Medenbach, Ruhr-Universität Bochum (001) (010) 420 nm440 nm460 nm480 nm500 nm520 nm540 nm560 nm580 nm600 nm620 nm640 nm660 nm680 nm Brookite crossed axial planes for blue and red light

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m monoclinic crystal, extreme inclined dispersion 2-fold axis mirror plane

Olaf Medenbach, Ruhr-Universität Bochum Dispersion of the Indicatrix in Monoclinic Crystals n y = b, optic plane  (010), extreme inclined dispersion, 2V v >>2V r MgPt(CN) 4 5H 2 O C 3 H 8 O 3, synthetic uniaxial for red light intermediate axial angle for green light large axial angle for blue light

Olaf Medenbach, Ruhr-Universität Bochum monoclinic extreme inclined dispersion The animation starts a few seconds after the next click.

Olaf Medenbach, Ruhr-Universität Bochum b (010) 420 nm440 nm460 nm480 nm500 nm520 nm540 nm560 nm580 nm600 nm620 nm monoclinic extreme inclined dispersion

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m monoclinic crystal, extreme horizontal dispersion 2-fold axis mirror plane

Olaf Medenbach, Ruhr-Universität Bochum Dispersion of the Indicatrix in Monoclinic Crystals obtuse bisectix ׀׀ b, optic planes  (010), extreme horizontal dispersion SrPt(CN) 4 3H 2 O, synthetic axial plane for blue light axial plane for green light axial plane for red light

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m monoclinic crystal, extreme crossed dispersion 2-fold axis m mirror plane

Olaf Medenbach, Ruhr-Universität Bochum Dispersion of the Indicatrix in Monoclinic Crystals acute bisectix ׀׀ b, optic planes  (010), extreme crossed dispersion n-propylamine picrate, synthetic axial plane for blue light axial plane for green light axial plane for red light

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: no symmetry in the interference figure triclinic crystal

Olaf Medenbach, Ruhr-Universität Bochum Dispersion of the Indicatrix in Triclinic Crystals no symmetry elements present Diisopropylamine picrate, synthetic axial plane for bluegreen light axial plane for green light axial plane for red light

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m crystal's symmetry: monoclinic diagnostic color effects m mirror plane 2-fold axis

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m crystal's symmetry: monoclinic crossed dispersion, borax, Na 2 [B 4 O 5 (OH) 4 ] 8H 2 O diagnostic color effects 2-fold axis m mirror plane

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m crystal ' s symmetry: monoclinic crossed dispersion, heulandite, Ca[Al 2 Si 7 O 18 ] 6H 2 O diagnostic color effects 2-fold axis m mirror plane

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m crystal's symmetry: monoclinic inclined dispersion, high sanidine, K[AlSi 3 O 8 ] 2-fold axis mirror plane diagnostic color effects

Olaf Medenbach, Ruhr-Universität Bochum 2-fold axis mirror plane Find the Symmetry: symmetry of the interference figure: 2/m crystal's symmetry: monoclinic inclined dispersion

Olaf Medenbach, Ruhr-Universität Bochum Find the Symmetry: symmetry of the interference figure: 2/m crystal's symmetry: monoclinic horizontal dispersion, low sanidine, K[AlSi 3 O 8 ] 2-fold axis mirror plane diagnostic color effects

Olaf Medenbach, Ruhr-Universität Bochum Nesse (2001) after Steward & Ribbe (1983). Feldspar mineralogy, Rev. Mineral., MSA Optical behaviour of K-feldspar as a function of the degree of Si-Al order Nesse (2001) after Su et al. (1984). Am. Mineral. 69, high sanidine: inclined dispersion microcline: horizontal dispersion (010) medium degree of order: pseudo-uniaxial