The University of Chicago Center for Magnetic Reconnection Studies: Final Report Amitava Bhattacharjee Institute for the Study of Earth, Oceans, and Space.

Slides:



Advertisements
Similar presentations
Plans for Magnetic Reconnection Research Masaaki Yamada Ellen Zweibel for Magnetic Reconnection Working group CMSO Planning Meeting at U. Chicago November.
Advertisements

EXTENDED MHD MODELING: BACKGROUND, STATUS AND VISION
NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
NONLINEAR COMPUTATION OF LABORATORY DYNAMOS DALTON D. SCHNACK Center for Energy and Space Science Science Applications International Corp. San Diego, CA.
Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
Dissipation in Force-Free Astrophysical Plasmas Hui Li (Los Alamos National Lab) Radio lobe formation and relaxation Dynamical magnetic dissipation in.
Center for Magnetic Self-Organization, August 4, 2004
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Outline: I. Introduction and examples of momentum transport II. Momentum transport physics topics being addressed by CMSO III. Selected highlights and.
Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Reconnection: Theory and Computation Programs and Plans C. C. Hegna Presented for E. Zweibel University of Wisconsin CMSO Meeting Madison, WI August 4,
Multiple reconnections and explosive events and in MST and solar flares Gennady Fiksel CMSO workshop, Princeton, NJ, Oct 5-8, 2005.
Magnetic Chaos and Transport Paul Terry and Leonid Malyshkin, group leaders with active participation from MST group, Chicago group, MRX, Wisconsin astrophysics.
Proposed Study of Dynamo Activity Associated with Astrophysical Jets Carl Sovinec, Univ. of WI, Engineering Physics study suggested by Stirling Colgate.
Progress and Plans on Magnetic Reconnection for CMSO M. Yamada, C. Hegna, E. Zweibel For General meeting for CMSO August 4, Recent progress and.
EXTENDED MHD SIMULATIONS: VISION AND STATUS D. D. Schnack and the NIMROD and M3D Teams Center for Extended Magnetohydrodynamic Modeling PSACI/SciDAC.
Results from Magnetic Reconnection Experiment And Possible Application to Solar B program For Solar B Science meeting, Kyoto, Japan November 8-11, 2005.
Three Species Collisionless Reconnection: Effect of O+ on Magnetotail Reconnection Michael Shay – Univ. of Maryland Preprints at:
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Reconnection: Geometry and Dynamics A. Bhattacharjee, N. Bessho, J. Dorelli, S. Hu, J. M. Greene, Z. W. Ma, C. S. Ng, and P. Zhu Space Science Center Institute.
Fast Magnetic Reconnection B. Pang U. Pen E. Vishniac.
Algorithm Development for the Full Two-Fluid Plasma System
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
William Daughton Plasma Physics Group, X-1 Los Alamos National Laboratory Presented at: Second Workshop on Thin Current Sheets University of Maryland April.
Collisionless Magnetic Reconnection J. F. Drake University of Maryland Magnetic Reconnection Theory 2004 Newton Institute.
The Structure of the Parallel Electric Field and Particle Acceleration During Magnetic Reconnection J. F. Drake M.Swisdak M. Shay M. Hesse C. Cattell University.
Magnetic field diffusion in Molecular Clouds Understanding star formation is a central problem of modern astrophysics. In this work we are performing a.
ASYMMETRIC THIN CURRENT SHEETS: A 1-D TEST PARTICLE MODEL AND COMPARISON WITH SW DATA J. Chen 1 and R. A. Santoro 2 1 Plasma Physics Division, Naval Research.
SSL (UC Berkeley): Prospective Codes to Transfer to the CCMC Developers: W.P. Abbett, D.J. Bercik, G.H. Fisher, B.T. Welsch, and Y. Fan (HAO/NCAR)
Magnetic Reconnection in Multi-Fluid Plasmas Michael Shay – Univ. of Maryland.
Non-disruptive MHD Dynamics in Inward-shifted LHD Configurations 1.Introduction 2.RMHD simulation 3.DNS of full 3D MHD 4. Summary MIURA, H., ICHIGUCHI,
Massively Parallel Magnetohydrodynamics on the Cray XT3 Joshua Breslau and Jin Chen Princeton Plasma Physics Laboratory Cray XT3 Technical Workshop Nashville,
Overview of MHD and extended MHD simulations of fusion plasmas Guo-Yong Fu Princeton Plasma Physics Laboratory Princeton, New Jersey, USA Workshop on ITER.
Challenging problems in kinetic simulation of turbulence and transport in tokamaks Yang Chen Center for Integrated Plasma Studies University of Colorado.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Multiscale issues in modeling magnetic reconnection J. F. Drake University of Maryland IPAM Meeting on Multiscale Problems in Fusion Plasmas January 10,
Numerical Simulation on Flow Generated Resistive Wall Mode Shaoyan Cui (1,2), Xiaogang Wang (1), Yue Liu (1), Bo Yu (2) 1.State Key Laboratory of Materials.
Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics A.Bhattacharjee, W. Fox, K. Germaschewski, and Y-M. Huang Center for Integrated.
CMRS Review, PPPL, 5 June 2003 &. 4 projects in high energy and nuclear physics 5 projects in fusion energy science 14 projects in biological and environmental.
Reconnection rates in Hall MHD and Collisionless plasmas
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
Nonlinear interactions between micro-turbulence and macro-scale MHD A. Ishizawa, N. Nakajima, M. Okamoto, J. Ramos* National Institute for Fusion Science.
IMPRS Lindau, Space weather and plasma simulation Jörg Büchner, MPAe Lindau Collaborators: B. Nikutowski and I.Silin, Lindau A. Otto, Fairbanks.
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Kinetic MHD Simulation in Tokamaks H. Naitou, J.-N. Leboeuf †, H. Nagahara, T. Kobayashi, M. Yagi ‡, T. Matsumoto*, S. Tokuda* Joint Meeting of US-Japan.
Collisionless Magnetic Reconnection J. F. Drake University of Maryland presented in honor of Professor Eric Priest September 8, 2003.
STUDIES OF NONLINEAR RESISTIVE AND EXTENDED MHD IN ADVANCED TOKAMAKS USING THE NIMROD CODE D. D. Schnack*, T. A. Gianakon**, S. E. Kruger*, and A. Tarditi*
Simulation Study of Magnetic Reconnection in the Magnetotail and Solar Corona Zhi-Wei Ma Zhejiang University & Institute of Plasma Physics Beijing,
Current Sheet and Vortex Singularities: Drivers of Impulsive Reconnection A. Bhattacharjee, N. Bessho, K. Germaschewski, J. C. S. Ng, and P. Zhu Space.
MHD and Kinetics Workshop February 2008 Magnetic reconnection in solar theory: MHD vs Kinetics Philippa Browning, Jodrell Bank Centre for Astrophysics,
H. Hasegawa(1), A. Retinò(2), A. Vaivads(3), Y. Khotyaintsev(3), M
BOUT++ Towards an MHD Simulation of ELMs B. Dudson and H.R. Wilson Department of Physics, University of York M.Umansky and X.Xu Lawrence Livermore National.
Ergodic heat transport analysis in non-aligned coordinate systems S. Günter, K. Lackner, Q. Yu IPP Garching Problems with non-aligned coordinates? Description.
21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21, /17 Gyrokinetic Theory and Simulation of Zonal Flows and Turbulence in Helical Systems T.-H.
Center for Extended MHD Modeling (PI: S. Jardin, PPPL) –Two extensively developed fully 3-D nonlinear MHD codes, NIMROD and M3D formed the basis for further.
Yang Henglei( 杨恒磊 ),Wang Xiaogang( 王晓钢 ) State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams; The Department of Physics;
1 Recent Progress on QPS D. A. Spong, D.J. Strickler, J. F. Lyon, M. J. Cole, B. E. Nelson, A. S. Ware, D. E. Williamson Improved coil design (see recent.
Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration: Ethan Vishniac, Grzegorz.
Resistive Modes in CDX-U J. Breslau, W. Park. S. Jardin, R. Kaita – PPPL D. Schnack, S. Kruger – SAIC APS-DPP Annual Meeting Albuquerque, NM October 30,
Fast Reconnection in High-Lundquist- Number Plasmas Due to Secondary Tearing Instabilities A.Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers Center.
NIMROD Simulations of a DIII-D Plasma Disruption S. Kruger, D. Schnack (SAIC) April 27, 2004 Sherwood Fusion Theory Meeting, Missoula, MT.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA Influence of ion orbit width on threshold of neoclassical tearing modes Huishan Cai 1, Ding Li 2, Jintao.
Unstructured Meshing Tools for Fusion Plasma Simulations
GEM Student Tutorial: GGCM Modeling (MHD Backbone)
Gyrofluid Turbulence Modeling of the Linear
Adaptive Grid Generation for Magnetically Confined Plasmas
Non linear evolution of 3D magnetic reconnection in slab geometry
Presentation transcript:

The University of Chicago Center for Magnetic Reconnection Studies: Final Report Amitava Bhattacharjee Institute for the Study of Earth, Oceans, and Space University of New Hampshire PSACI PAC, Princeton, June

The University of Chicago University of New Hampshire: A. Bhattacharjee (PI and Director), N. Bessho, K. Germaschewski, J. Maron, C. S. Ng, P. Zhu University of Iowa: B. Chandran, L.-J. Chen, Z. W. Ma, J. Maron University of Chicago: R. Rosner (PI), T. Linde, L. Malyshkin, A. Siegel University of Texas at Austin: R. Fitzpatrick (PI), F. Waelbroeck, P. Watson TOPS collaborators : D. Keyes, F. Dobrian, B. Smith CMRS: Interdisciplinary group drawn from applied mathematics, astrophysics, computer science, fluid dynamics, plasma physics, and space science communities (supported also by DOE/ASCI, NASA, NSF)

CMRS: What have we accomplished on the computing front? Principal Computational Deliverable: Magnetic Reconnection Code (MRC) We have developed the world’s first two-fluid (or Hall MHD) code in an Adaptive Mesh Refinement (AMR) framework. Its attributes are: A fully 3D code which integrates two-fluid/Hall MHD equations Massively parallel with Adaptive Mesh Refinement (AMR) Geometry: slab (2002) and cylindrical/toroidal (2004) (with AMR in the radial direction) Flexible boundary conditions: free as well as forced reconnection studies Options for equations of state Modular code, with the flexibility to change algorithms if necessary Code performs and scales well Framework defined by FLASH---developed by active collaboration with computer scientists Code can be used for diverse applications, not just magnetic reconnection

The University of Chicago Adaptive Mesh Refinement

Effectiveness of AMR Example: 2D MHD/Hall MHD Efficiency of AMR High effective resolution Level# grids# grid points Grid points in adaptive simulation: Grid points in non-adaptive simulation: Ratio0.02 log

Scaling on a model reconnection problem

CMRS: High-Performance Computing Tools Magnetic Reconnection Code (MRC), based on extended two-fluid (or Hall MHD) equations, in a parallel AMR framework (Flash, developed at U of C). ExPIC, a fully electromagnetic 3D Particle-in-Cell (PIC) code MRC is our principal workhorse and two-fluid equations capture important collisionless/kinetic effects. Why did we need a PIC code? Generalized Ohm’s law Thin current sheets, embedded in the reconnection layer, are subject to instabilities that require kinetic theory for a complete description. ExPIC is massively parallel and can do realistic electron-to-ion mass ratios.

The University of Chicago What did we originally propose to do with the MRC? And what have we done so far?(√) Applications to astrophysical, fusion, and space plasmas Sawtooth oscillations in tokamaks( √) and magnetotail substorms ( √) Error-field studies in tokamaks ( √) Astrophysical applications: galactic dynamo ( √), transport of magnetic flux to the galactic center ( √) Direct simulations of laboratory magnetic reconnection experiments RFP dynamo studies While we have not completed all the tasks in our original proposal, we have carried out a number of tasks that were not in our proposal….

What have we done so far also includes topics that are above and beyond what was proposed originally…. (marked in red) Sawtooth crashes in tokamaks (using two-field, four-field, and full two-fluid equations in slab and cylindrical geometry) Error-field induced islands in tokamaks Scaling of forced reconnection in the Taylor model (resistive and Hall MHD), with and without anomalous resistivity Discovery of compressional wave-driven bursty reconnection in the Taylor model Magnetotail substorms: role of reconnection and ballooning instabilities at onset 3D tearing instabilities involving nulls: discovery of the spherical tearing mode Mathematical and computational solution of the Parker problem in coronal physics Investigation of finite-time vortex singularity in Navier-Stokes equations (“Millenium prize problem”) Growth of magnetic helicity in a turbulent astrophysical dynamo Anisotropic MHD and electron MHD turbulence

The University of Chicago SciDAC TOPS-CMRS collaboration CMRS team has provided TOPS with model 2D multicomponent MHD evolution code, and explicit solver TOPS has implemented fully nonlinearly implicit GMRES-MG-ILU parallel solver –in PETSc ’s FormFunctionLocal format using DMMG and automatic differentiation for Jacobian objects CMRS and TOPS reproduce the same dynamics on the same grids with the same time-stepping –up to a finite-time singularity due to collapse of current sheet (further dynamics falls below present uniform mesh resolution) TOPS code, being implicit, can choose timesteps an order of magnitude larger, with potential for higher ratio in more physically realistic parameter regimes –but is still slower in wall-clock time

The University of Chicago Interrelationship between fusion, space, and astrophysical plasmas An example…..

Impulsive Reconnection: The Trigger Problem Dynamics exhibits an impulsiveness, that is, a sudden change in the time-derivative of the growth rate. The magnetic configuration evolves slowly for a long period of time, only to undergo a sudden dynamical change over a much shorter period of time. Dynamics is characterized by the formation of near- singular current and vortex sheets in finite time. Examples Sawtooth oscillations in tokamaks Magnetospheric substorms Impulsive solar and stellar flares

The University of Chicago Sawtooth crash in tokamaks (Yamada et al. 1994)

The University of Chicago Magnetospheric Substorms

Current Disruption in the Near-Earth Magnetotail Ohtani et al. 1992

Solar corona Magnetic field encyclopedias/Fig5_28.jpg

The University of Chicago Impulsive solar/stellar flares

The University of Chicago Hierarchy of collisionless reconnection models 3D Hall cylindrical MHD Four-Field Model (Hazeltine et al. 1987, Aydemir 1992) Variables: magnetic field B, velocity v, pressure p Variables: magnetic potential , stream function , parallel speed v, pressure p Two-Field Model (Porcelli et al. 1999) Variables: magnetic potential , stream function  (with generalized Ohm's law)

The University of Chicago Resolving the current sheet  zoom

The University of Chicago t Island width magnetic flux function

S = 10 9 JzJz J z, cut zoom

Aydemir’s four-field simulations (1992): effect of electron pressure gradient in the generalized Ohm’s law causes near-explosive nonlinear growth of m=1 island. Sawtooth Oscillations in Tokamaks

Resistive MHD t=200 t=400 t=600 Poloidal velocity streamlines, V z (color coded) Hall MHD t=200 t=260 t=320

Two-fluid (or Hall MHD) Resistive MHD Growth rate (Time-history) MRC Cylinder

Observations (Ohtani et al. 1992) Hall MHD Simulation Cluster observations: Mouikis et al., 2004

Hall MHD Ballooning Instabilities

Intermediate  Regime for Instability: Compressional Stability at High 

The University of Chicago Large but finite ky ballooning modes from initial-value studies: Towards a nonlinear theory of ballooning and tests of “detonation models”

The University of Chicago k y and  Dependence

Possible Scenario of Substorm Onset: Near-Earth Ballooning Instability Induced by Current Sheet Thinning and/or Reconnection

The University of Chicago Error-field induced reconnection in tokamaks

The University of Chicago Comparison of theory and simulation for different values of resistivity and viscosity

The Spherical Tearing Mode: A fully 3D model of reconnection (with J. M. Greene and S. Hu) Greene (1988) and Lau and Finn (1990): in 3D, topological configuration of great interest is one that has magnetic nulls with loops composed of field lines connecting the nulls. There are two types of nulls, type A and type B, and they come in pairs. The null-null lines are called separators, and these are analogous to closed field lines in toroidal plasmas. For the magnetosphere, these ideas were already represented in the vacuum superposition models of Dungey (1963), Cowley (1973), Stern (1973). But a vacuum carries no current, and hence no spontaneous tearing instability.

Analytical 3D spherical equilibrium with spherical separator containing two magnetic nulls

Unstable equilibrium Equilibrium plus perturbation Field lines penetrating the spherical tearing surface

Breaking of the spherical tearing surface allows external field lines to penetrate into the surface

Evidence of spherical tearing in a Global General Circulation Model (GGCM) simulation with northward IMF (with J. Dorelli and J. Raeder)

The University of Chicago GGCM picture including solar wind open field lines draping the Earth’s magnetosphere