Copulas Univariate Functions Gary G Venter Conditioning with Copulas nLet C 1 (u,v) denote the first partial derivative of C(u,v). F(x,y) = C(F X (x),F.

Slides:



Advertisements
Similar presentations
Copula Representation of Joint Risk Driver Distribution
Advertisements

N 3 = 7 Input (s) Output X(s) s1s1 s2s2 s3s3 sPsP m = Number of Input Points (=3) n i = Number of Outputs at Input s i X (i) = Set of Outputs X j (i) at.
Computing with Bivariate Distributions Stephen Mildenhall.
The Stand Structure Generator - further explorations into the joy of copula Dr. John A. Kershaw, Jr., CF, RPF Professor of Forest Mensuration UNB, Faculty.
Multiple Regression W&W, Chapter 13, 15(3-4). Introduction Multiple regression is an extension of bivariate regression to take into account more than.
Introduction to Copulas B. Wade Brorsen Oklahoma State University.
Donald F. Behan Society of Actuaries Meeting Phoenix, AZ1 Using Copulas to Model Extreme Events by Donald F. Behan and Sam Cox Georgia State University.
Master thesis presentation Joanna Gatz TU Delft 29 of July 2007 Properties and Applications of the T copula.
Calculations in the Bivariate Normal Distribution James H. Steiger.
Econ 140 Lecture 41 More on Univariate Populations Lecture 4.
Simulating Exchangeable Multivariate Archimedean Copulas and its Applications Authors: Florence Wu Emiliano A. Valdez Michael Sherris.
Variance and covariance M contains the mean Sums of squares General additive models.
TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS.
Correlation and Simple Regression Introduction to Business Statistics, 5e Kvanli/Guynes/Pavur (c)2000 South-Western College Publishing.
Probability theory 2010 Main topics in the course on probability theory  Multivariate random variables  Conditional distributions  Transforms  Order.
GRA 6020 Multivariate Statistics Ulf H. Olsson Professor of Statistics.
Chapter 6 The Normal Distribution
Probability theory 2011 Main topics in the course on probability theory  The concept of probability – Repetition of basic skills  Multivariate random.
Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models Authors: Florence Wu Michael Sherris Date: 11 November 2005.
GRA 6020 Multivariate Statistics Ulf H. Olsson Professor of Statistics.
Theory and Applications
Correlations and Copulas Chapter 10 Risk Management and Financial Institutions 2e, Chapter 10, Copyright © John C. Hull
1 The Vision Thing Power Thirteen Bivariate Normal Distribution.
1 Confidence Intervals for Means. 2 When the sample size n< 30 case1-1. the underlying distribution is normal with known variance case1-2. the underlying.
The Multivariate Normal Distribution, Part 1 BMTRY 726 1/10/2014.
Copula functions Advanced Methods of Risk Management Umberto Cherubini.
Correlations and Copulas 1. Measures of Dependence 2 The risk can be split into two parts: the individual risks and the dependence structure between them.
1 Appendix E: Sigma Notation. 2 Definition: Sequence A sequence is a function a(n) (written a n ) who’s domain is the set of natural numbers {1, 2, 3,
CIVL 181Tutorial 5 Return period Poisson process Multiple random variables.
Marginal and Conditional distributions. Theorem: (Marginal distributions for the Multivariate Normal distribution) have p-variate Normal distribution.
Elements of Financial Risk Management Second Edition © 2012 by Peter Christoffersen 1 Distributions and Copulas for Integrated Risk Management Elements.
Testing Distributions of Stochastically Generated Yield Curves Gary G Venter AFIR Seminar September 2003.
Normal Distribution.
Correlation examining relationships. Five Descriptive Questions What is the middle of the set of scores? What is the middle of the set of scores? How.
Critical Numbers and Finding Extrema. Critical Numbers Example 1: Example 2: 1.Take the derivative of f(x) 2.Set the derivative equal to zero 3.Solve.
Using Copulas.
Stats Probability Theory Summary. The sample Space, S The sample space, S, for a random phenomena is the set of all possible outcomes.
Factoring General Trinomials Factoring Trinomials Factors of 9 are: REVIEW: 1, 93, 3.
CIA Annual Meeting LOOKING BACK…focused on the future.
Math 4030 – 13a Correlation & Regression. Correlation (Sec. 11.6):  Two random variables, X and Y, both continuous numerical;  Correlation exists when.
Gary G Venter Tails of Copulas. 2 Guy Carpenter Correlation Issues Correlation is stronger for large events Can model by copula methods Quantifying correlation.
Product Sales Analysis: Sales Potential vs. Sales Growth Business Intelligence Solutions January
TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE
Warm Up. 4.3 Solve by Factoring Find this in your notes!
Lec. 35 – Non-parametric Statistics. When to use non-parametric statistics? Situation 1:
Notes Over 10.7 Factoring Special Products Difference of Two Squares.
MathematicalMarketing Slide 4b.1 Distributions Chapter 4: Part b – The Multivariate Normal Distribution We will be discussing  The Multivariate Normal.
Arithmetic Sequences and Series Section Objectives Use sequence notation to find terms of any sequence Use summation notation to write sums Use.
Презентацию подготовила Хайруллина Ч.А. Муслюмовская гимназия Подготовка к части С ЕГЭ.
SEEM3430: Information Systems Analysis and Design
Chapter 10 CORRELATION.
Solving Quadratic Equations by the Complete the Square Method
Main topics in the course on probability theory
Inference in Simple Linear Regression
Inference for the mean vector
Multiple Regression.
Math 4030 – 12a Correlation.
BIVARIATE REGRESSION AND CORRELATION
Summarising and presenting data - Univariate analysis continued
Correlations and Copulas
Solve: 1. 4<
كيــف تكتـب خطـة بحـث سيئـة ؟؟
الدكتـور/ عبدالناصـر محمـد عبدالحميـد
Special Problems (Solve)
Statistical Process Control
Изразеното в настоящата презентация мнение обвързва единствено автора и не представлява официално становище на Комисията за финансов надзор Данил Джоргов.
”Mathematics is the language of physics”
TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE
Regression and Correlation of Data
Presentation transcript:

Copulas Univariate Functions Gary G Venter Conditioning with Copulas nLet C 1 (u,v) denote the first partial derivative of C(u,v). F(x,y) = C(F X (x),F Y (y)), distribution of Y|X=x is given by: nF Y|X (y) = C 1 (F X (x),F Y (y)) nC(u,v) = uv, the conditional distribution of V given that U=u is C 1 (u,v) = v = Pr(V<v|U=u). nIf C 1 is simple enough to invert algebraically, then the simulation of joint probabilities can be done using the derived conditional distribution. That is, first simulate a value of U, then simulate a value of V from C 1.

Copulas Univariate Functions Gary G Venter Tails of Copulas ASTIN 2001

Copulas Univariate Functions Gary G Venter Kendall correlation  is a constant of the copula  = 4E[C(u,v)] – 1  = 2 d E[C(u 1,...,u d )] – 1 2 d – 1 – 1

Copulas Univariate Functions Gary G Venter Frank’s Copula nDefine g z = e -az – 1 nFrank’s copula with parameter a  0 can be expressed as: nC(u,v) = -a -1 ln[1 + g u g v /g 1 ] nC 1 (u,v) = [g u g v +g v ]/[g u g v +g 1 ] nc(u,v) = -ag 1 (1+g u+v )/(g u g v +g 1 ) 2  (a) = 1 – 4/a + 4/a 2  0 a t/(e t -1) dt For a<0 this will give negative values of . nv = C 1 -1 (p|u) = -a -1 ln{1+pg 1 /[1+g u (1–p)]}

Copulas Univariate Functions Gary G Venter

Copulas Univariate Functions Gary G Venter Gumbel Copula nC(u,v) = exp{- [(- ln u) a + (- ln v) a ] 1/a }, a  1. nC 1 (u,v) = C(u,v)[(- ln u) a + (- ln v) a ] -1+1/a (-ln u) a-1 /u nc(u,v) = C(u,v)u -1 v -1 [(-ln u) a +(-ln v) a ] -2+2/a [(ln u)(ln v)] a- 1  {1+(a-1)[(-ln u) a +(-ln v) a ] -1/a }  (a) = 1 – 1/a nSimulate two independent uniform deviates u and v nSolve numerically for s>0 with ue s = 1 + as nThe pair [exp(-sv a ), exp(-s(1-v) a )] will have the Gumbel copula distribution

Copulas Univariate Functions Gary G Venter

Copulas Univariate Functions Gary G Venter Heavy Right Tail Copula nC(u,v) = u + v – 1 + [(1 – u) -1/a + (1 – v) -1/a – 1] -a a>0 nC 1 (u,v) = 1 – [(1 – u) -1/a + (1 – v) -1/a – 1] -a-1 (1 – u) -1-1/a nc(u,v) = (1+1/a)[(1–u) -1/a +(1– v) -1/a –1] -a-2 [(1–u)(1– v)] -1-1/a  (a) = 1/(2a + 1) nCan solve conditional distribution for v

Copulas Univariate Functions Gary G Venter

Copulas Univariate Functions Gary G Venter Joint Burr nF(x) = 1 – (1 + (x/b) p ) -a and G(y) = 1 – (1 + (y/d) q ) -a nF(x,y) = 1 – (1 + (x/b) p ) -a – (1 + (y/d) q ) -a + [1 + (x/b) p + (y/d) q ] -a nThe conditional distribution of y|X=x is also Burr: nF Y|X (y|x) = 1 – [1 + (y/d x ) q ] -(a+1), where d x = d[1 + (x/b) p/q ]

Copulas Univariate Functions Gary G Venter Partial Perfect Correlation Copula Generator nAssume logical values 0 and 1 are arithmetic also nh : unit square  unit interval nH(x) =  0 x h(t)dt nC(u,v) = uv – H(u)H(v) + H(1)H(min(u,v)) nC 1 (u,v) = v – h(u)H(v) + H(1)h(u)(v>u) nc(u,v) = 1 – h(u)h(v) + H(1)h(u)(u=v)

Copulas Univariate Functions Gary G Venter h(u) = (u>a) nH(u) = (u – a)(u>a)  (a) = (1 – a) 4

Copulas Univariate Functions Gary G Venter h(u) = u a nH(u) = u a+1 /(a+1)  (a) = 1/[3(a+1) 4 ] + 8/[(a+1)(a+2) 2 (a+3)]

Copulas Univariate Functions Gary G Venter The Normal Copula nN(x) = N(x;0,1) nB(x,y;a) = bivariate normal distribution function,  = a nLet p(u) be the percentile function for the standard normal: nN(p(u)) = u, dN(p(u))/du = N’(p(u))p’(u) = 1 nC(u,v) = B(p(u),p(v);a) nC 1 (u,v) = N(p(v);ap(u),1-a 2 ) nc(u,v) = 1/{(1-a 2 ) 0.5 exp([a 2 p(u) 2 -2ap(u)p(v)+a 2 p(v) 2 ]/[2(1- a 2 )])}  (a) = 2arcsin(a)/  n a: 

Copulas Univariate Functions Gary G Venter

Copulas Univariate Functions Gary G Venter Tail Concentration Functions nL(z) = Pr(U<z,V<z)/z 2 nR(z) = Pr(U>z,V>z)/(1 – z) 2 nL(z) = C(z,z)/z 2 n1 - Pr(U>z,V>z) = Pr(U<z) + Pr(V<z) - Pr(U<z,V<z) n = z + z – C(z,z). nThen R(z) = [1 – 2z +C(z,z)]/(1 – z) 2 nGeneralizes to multi-variate case

Copulas Univariate Functions Gary G Venter

Copulas Univariate Functions Gary G Venter Cumulative Tau  –1+4  0 1  0 1 C(u,v)c(u,v) d v d u nJ(z) = –1+4  0 z  0 z C(u,v)c(u,v) d v d u/C(z,z) 2 nGeneralizes to multi-variate case

Copulas Univariate Functions Gary G Venter

Copulas Univariate Functions Gary G Venter Cumulative Conditional Mean nM(z) = E(V|U<z) = z -1  0 z  0 1 vc(u,v) d v d u nM(1) = ½ nA pairwise concept Copula Distribution Function nK(z) = Pr(C(u,v)<z) nGeneralizes to multi-variate case

Copulas Univariate Functions Gary G Venter

Copulas Univariate Functions Gary G Venter HRT Gumbel Frank Normal Parameter Ln Likelihood Tau

Copulas Univariate Functions Gary G Venter