Chapter 1. Introduction, perspectives, and aims. On the science of simulation and modelling. Modelling at bulk, meso, and nano scale. (2 hours). Chapter.

Slides:



Advertisements
Similar presentations
Números.
Advertisements

. Chapter 1. Introduction, perspectives, and aims. On the science of simulation and modelling. Modelling at bulk, meso, and nano scale. (2 hours). Chapter.
Worksheets.
A 10-a editie a Seminarului National de nanostiinta si nanotehnologie 18 mai 2011 Biblioteca Academiei Romane Tight-binding (TB) methods: Empirical Tight-binding.
Development of analytical bond- order potentials for the Be-C-W-H system C. Björkas, N. Juslin, K. Vörtler, H. Timkó, K. Nordlund Department of Physics,
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
Objectives By the end of this section you should:
The 5S numbers game..
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
The basics for simulations
Ferroelectric topology and electronic structure of BaTiO 3 (001) 1 Université Paris-Sud 11 – École Doctorale 107 Physique de la Région Parisienne 2 Laboratoire.
Progressive Aerobic Cardiovascular Endurance Run
Size-dependent recombination dynamics in ZnO nanowires
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
Before Between After.
Mitglied der Helmholtz-Gemeinschaft Giorgi Khazaradze Tbilisi, July10, 2014 Study of hexaferrite Ba 0.6 Sr 1.4 Zn 2 Fe 12 O 22 by EPR technique.
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Static Equilibrium; Elasticity and Fracture
Resistência dos Materiais, 5ª ed.
The resistivity of bulk ferromagnetic metals depends on the angle between the magnetization and the electric current. This phenomenon was discovered by.
. Chapter 1. Introduction, perspectives, and aims. On the science of simulation and modelling. Modelling at bulk, meso, and nano scale. (2 hours). Chapter.
Thermodynamics of Oxygen Defective Magnéli Phases in Rutile: A First Principles Study Leandro Liborio and Nicholas Harrison Department of Chemistry, Imperial.
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3
Coulomb Interaction in quantum structures - Effects of
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Phase separation in strongly correlated electron systems with Jahn-Teller ions K.I.Kugel, A.L. Rakhmanov, and A.O. Sboychakov Institute for Theoretical.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
CHAPTER 3 Introduction to the Quantum Theory of Solids
Perovskites: crystal structure, important compounds and properties.
Full first-principles simulations on 180º stripe domains in realistic ferroelectric capacitors Pablo Aguado-Puente Javier Junquera.
First Principles Calculations of Complex Oxide Perovskites David-Alexander Robinson Sch., Theoretical Physics, The University of Dublin, Trinity College.
David-Alexander Robinson Sch., Trinity College Dublin Dr. Anderson Janotti Prof. Chris Van de Walle Computational Materials Group Materials Research Laboratory,
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
MATERIALS FOR NANOTECHNOLOGIES CMAST (Computational MAterials Science & Technology) Virtual Lab Computational Materials Science.
Science and Technology of Nano Materials
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Molecular Dynamic Simulation of Atomic Scale Intermixing in Co-Al Thin Multilayer Sang-Pil Kim *, Seung-Cheol Lee and Kwang-Ryeol Lee Future Technology.
1 Li Xiao and Lichang Wang Department of Chemistry & Biochemistry Southern Illinois University Carbondale The Structure Effect of Pt Clusters on the Vibrational.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Berry Phase Effects on Electronic Properties
Atomic Scale Computational Simulation for Nano-materials and Devices: A New Research Tool for Nanotechnology Kwang-Ryeol Lee Future Technology Research.
Jeroen van den Brink Bond- versus site-centred ordering and possible ferroelectricity in manganites Leiden 12/08/2005.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : Computational Materials Science: an Overview CASTEP Developers’ Group.
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Ferroelectricity induced by collinear magnetic order in Ising spin chain Yoshida lab Ryota Omichi.
Javier Junquera Introduction to atomistic simulation methods in condensed matter Alberto García Pablo Ordejón.
Hiroshima Nov 2006 Electric Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. (SKKU) Korea Collaboration Chenglong Jia (KIAS) Shigeki.
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
Flat Band Nanostructures Vito Scarola
Understand and predict materials with atomic accuracy Giovanni Cantele Coherentia CNR-INFM and Università di Napoli “Federico II.
Multiferroics as Data Storage Elements
Half-Metallic Ferromagnetism in Fe-doped Zn3P2 From First-Principles Calculations G. JAI GANESH and S. MATHI JAYA Materials Science Group, Indira Gandhi.
ECEE 302: Electronic Devices
Electronic Structure and First Principles Theory
Agenda Workshop : Suzhou Institute of Nanotech and Nanobionics (SINano) Chinese Academy of Sciences November 6th SUZHOU.
Computational Materials Science Group
Spin quantum number – ms
2005 열역학 심포지엄 Experimental Evidence for Asymmetric Interfacial Mixing of Co-Al system 김상필1,2, 이승철1, 이광렬1, 정용재2 1. 한국과학기술연구원 미래기술연구본부 2. 한양대학교 세라믹공학과 박재영,
Co-Al 시스템의 비대칭적 혼합거동에 관한 이론 및 실험적 고찰
Sang-Pil Kim and Kwang-Ryeol Lee Computational Science Center
Ionic liquid gating of VO2 with a hBN interfacial barrier
Multiscale Modeling and Simulation of Nanoengineering:
Revealing Hidden Phases in Materials
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

Chapter 1. Introduction, perspectives, and aims. On the science of simulation and modelling. Modelling at bulk, meso, and nano scale. (2 hours). Chapter 2. Experimental Techniques in Nanotechnology. Theory and Experiment: “Two faces of the same coin” (2 hours). Chapter 3. Introduction to Methods of the Classic and Quantum Mechanics. Force Fields, Semiempirical, Plane-Wave pseudpotential calculations. (2 hours) Chapter 4. Introduction to Methods and Techniques of Quantum Chemistry, Ab initio methods, and Methods based on Density Functional Theory (DFT). (4 hours) Chapter 5. Visualization codes, algorithms and programs. GAUSSIAN; CRYSTAL, and VASP. (6 hours)

. Chapter 6. Calculation of physical and chemical properties of nanomaterials. (2 hours). Chapter 7. Calculation of optical properties. Photoluminescence. (3 hours). Chapter 8. Modelization of the growth mechanism of nanomaterials. Surface Energy and Wullf architecture (3 hours) Chapter 9. Heterostructures Modeling. Simple and complex metal oxides. (2 hours) Chapter 10. Modelization of chemical reaction at surfaces. Heterogeneous catalysis. Towards an undertanding of the Nanocatalysis. (4 hours)

Chapter 9. Heterostructures Modeling. Simple and complex metal oxides. Juan Andrés y Lourdes Gracia Departamento de Química-Física y Analítica Universitat Jaume I Spain & CMDCM, Sao Carlos Brazil Sao Carlos, Novembro 2010

When two isomorphs of different materials are in epitaxial contact, an extraordinary phenomenon emerges in the interface, which cannot happen in the bulk or in the surface of an only specific material. Heterostructures sandwich-type

There is an enormous number of possible arrangements, so it would be better to investigate multicompound systems of potential interest using ab initio calculations to confirm that a given system has the desired properties before performing the experiment. ‡ ‡ (a) H. N. Lee, H. M. Christen, M. F. Chisholm, C. M. Rouleau, D. H. Lowndes, Nature 433, 395 (2005); (b) G. Rijnders, D. H. A. Blank, Nature 433, 369 (2005) The coupling between TiO 2 and SnO 2 affects the electronic structure and it could be used to control and improve the superficial physical and chemical properties of these systems. Heterostructures sandwich-type

surface core TiO 2 outer SnO 2 core SnO 2 outer TiO 2 (110) (010) (101) (001) SnO 2 /TiO 2 /SnO 2 TiO 2 /SnO 2 /TiO 2 Thickness (Å) of the used models Characterization of heterostructures TiO 2 J. Phys. Chem. A 112, 8943 (2008)

 X´ M X  E g = 2.68 eV  X´ M X  X´ M X  E g = 3.24 eV  X´ M X  E g = 2.57 eV (a) (c) (e) (b)  X´ M X  (d) E g = 3.70 eV (110) TiO 2 (a); SnO 2 (b); SnO 2 /TiO 2 /SnO 2 (c) and TiO 2 /SnO 2 /TiO 2 (d)

(010) TiO 2 (a); SnO 2 (b); SnO 2 /TiO 2 /SnO 2 (c) and TiO 2 /SnO 2 /TiO 2 (d)  X´ M X  E g = 3.55 eV (a) (c)  X´ M X E g = 3.46 eV (e)  X´ M X  (b) E g = 3.55 eV  X´ M X  (d) E g = 3.75 eV

 X´ M X   X´ M X  E g = 3.22 eV (a) (c)  X´ M X E g = 3.44 eV (e)  X´ M X  (b) E g = 2.77 eV  X´ M X  (d) E g = 3.70 eV (101) TiO 2 (a); SnO 2 (b); SnO 2 /TiO 2 /SnO 2 (c) and TiO 2 /SnO 2 /TiO 2 (d)

 X M X   X´ M X  E g = 2.76 eV (a) (c)  X´ M X (e)  X´ M X  (b) E g = 2.53 eV  X´ M X  (d) (001) TiO 2 (a); SnO 2 (b); SnO 2 /TiO 2 /SnO 2 (c) and TiO 2 /SnO 2 /TiO 2 (d) E g = 3.19 eV E g = 3.48 eV

Characterization of heterostructures TiO 2

La parte superior de las bandas de Valencia (VB) vienen dominadas por las capas externas, esto es, por el TiO 2 y el SnO 2, respectivamente, mientras que la topología de la parte inferior de las bandas de conducción (CB) se parece a la de los cores. Hay una estabilización energética tanto de la VB como de la CB tanto en la superficie (110) como la (010) para el sistema SnO 2 /TiO 2 /SnO 2 en relación a su core TiO 2, mientras que se encuentra la tendencia opuesta para las misma superficies en el TiO 2 /SnO 2 /TiO 2 en relación a su core SnO 2 Caracterización heteroestructuras TiO 2

(001) Sr Zr Ti O Perspectives Characterization of heterostructure SrZrO 3 /SrTiO 3 /SrZrO 3

TiO 2 ended 9 layers model Sites : Sites: 3 – 23 PZT 40/60 (1 0 0) PbO ended 11 layers model Sites: Sites: (PbZrO 3 /PbTiO 3 /PbZrO 3 )

Charge density PZT TiO2 ended Not shared isolines between Pb and O a toms Ionic character, interaction of atoms as punctual charges Shared isolines between Ti and O atoms with continuous electronic density Covalent contribution plane PbO plane TiO2 SITES: 8 and 18

PZT PbO-ended: Gap: 3,62 eVPZT PbO-ended: Gap: 3,45 eV BAND STRUTURES PbO ended GAP INDIRETO PT. PbO-ended: Gap: 3,99 eV

PZT TiO2-ended: Gap: 4,41 eV PZT TiO2-ended: Gap: 3.66 eV INDIRECT GAP GAP INDIRETO DIRECT GAP BAND STRUTURES TiO2 ended PT. TiO2-ended: Gap: 3,84 eV INDIRECT GAP

PZT-Ti PT- Ti PZT-Ti-8-18

Two-Dimensional Confinement of 3d 1 Electrons in LaTiO 3 /LaAlO 3 Multilayers S. S. A. Seo, M. J. Han, G.W. J. Hassink, W. S. Choi, S. J. Moon, J. S. Kim, T. Susaki, Y. S. Lee, J. Yu, C. Bernhard, H.Y. Hwang, G. Rijnders, D. H. A. Blank, B. Keimer, and T.W. Noh PRL 104, (2010) We report spectroscopic ellipsometry measurements of the anisotropy of the interband transitions parallel and perpendicular to the planes of (LaTiO 3 )n(LaAlO 3 )5 multilayers with n = 1–3. These provide direct information about the electronic structure of the two-dimensional (2D) 3d 1 state of the Ti ions. In combination with local density approximation, including a Hubbard U calculation, we suggest that 2D confinement in the TiO2 slabs lifts the degeneracy of the t 2g states leaving only the planar d xy orbitals occupied. We outline that these multilayers can serve as a model system for the study of the t 2g 2D Hubbard model.

Oxygen octahedron reconstruction in the SrTiO 3 /LaAlO 3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban PHYSICAL REVIEW B 79, We investigate the LaAlO 3 /SrTiO 3 interface by means of aberration- corrected ultrahigh-resolution transmission electron microscopy allowing us to measure the individual atomic shifts in the interface at a precision of a few picometers. We find that the oxygen octahedron rotation typical for rhombohedral LaAlO3 is across the interface and is also induced in the originally cubic SrTiO 3 layer. Octahedra distortion leads to ferroelectricitylike dipole formation in the interface which is in addition modified by cation intermixing.

Carrier-mediated magnetoelectricity in complex oxide heterostructures Increasing demands for high-density, stable nanoscale memory elements, as well as fundamental discoveries in the field of spintronics, have led to renewed interest in exploring the coupling between magnetism and electric fields. Although conventional magnetoelectric routes often result in weak responses, there is considerable current research activity focused on identifying new mechanisms for magnetoelectric coupling. Here we demonstrate a linear magnetoelectric effect that arises from a carriermediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using firstprinciples density functional calculations, we illustrate this effect at the SrRuO 3 /SrTiO 3 interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behaviour, the interface displays a spatial coexistence of magnetism and dielectric polarization, suggesting a route to a new type of interfacial multiferroic. J. M. RONDINELLI, M. STENGEL AND N. A. SPALDIN, Nanotechnology 3,

Magnetoelectric effect at the SrRuO 3 /BaTiO 3 (001) interface: An ab initio study Manish K. Niranjan, J. D. Burton, J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal APPLIED PHYSICS LETTERS 95, Ferromagnet/ferroelectric interface materials have emerged as structures with strong magnetoelectric coupling that may exist due to unconventional physical mechanisms. Here we present a first- principles study of the magnetoelectric effect at the ferromagnet/ferroelectric SrRuO 3 /BaTiO 3 (001) interface. We find that the exchange splitting of the spin-polarized band structure, and therefore the magnetization, at the interface can be altered substantially by reversal of the ferroelectric polarization in the BaTiO 3. These magnetoelectric effects originate from the screening of polarization charges at the SrRuO 3 /BaTiO 3 interface and are consistent with the Stoner model for itinerant magnetism.

Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures C.W. Zou et al. / Chemical Physics Letters 476 (2009) 84–88 ZnO/TiO2 bottlebrush-like nanostructures have been prepared by a two-step process with facile hydrothermal method and magnetron sputtering technique. The bottlebrush heterostructures were formed due to the extremely low deposition rate of the magnetron sputtering process at room temperature and vapor–solid transformation mechanism dominates the TiO2 nanowires growth. This kind of bottlebrush heterostructures with a suitable length and density of covered TiO2 nanowires showed an enhanced photoluminescence property from TiO2 due to the resonant effect, which will offer great potential for photocatalysis applications.