UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.

Slides:



Advertisements
Similar presentations
EuroCondens SGB E.
Advertisements

Ultra-High Energy Cosmic Rays UHE Neutrino Sources UHE Neutrino Detection Acoustic Detection of UHE Neutrinos Existing Hydrophone Arrays Feasibility Tests.
The basics for simulations
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Testing the origin of the UHECRs with neutrinos Walter Winter DESY, Zeuthen, Germany Kavli Institute for Theoretical Physics (KITP), Santa Barbara, CA,
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Combined analysis of the spectrum and anisotropies of UHECRs Daniel De Marco Bartol Research Institute University of Delaware.
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
Ultra High Energy Cosmic Rays Theoretical Perspective(s) Angela V. Olinto CfCP, DAA, EFI University of Chicago.
High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy I: Gamma-Ray Bursts Geoff Bower.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
LHC ~E -2.7 ~E -3 ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser 2005 Nature accelerates particles 10 7 times the energy of LHC! where?how?
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg.
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv:
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
Ultra High Energy Cosmic Rays: Strangers Shrouded In Mystery Scott Fleming High Energy Series 24 Feb
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
AGASA Results Masahiro Teshima for AGASA collaboration
High Energy Neutrino Astronomy Christian Spiering DESY Zeuthen TAUP 2001.
The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
The effect of neutrinos on the initial fireballs in GRB ’ s Talk based on astro-ph/ (HK and Ralph Wijers) Hylke Koers NIKHEF & University of Amsterdam.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
PHY418 Particle Astrophysics
High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL.
Alexander Kappes (E. Strahler, P. Roth) ECAP, Universität Erlangen-Nürnberg for the IceCube Collaboration 2009 Int. Cosmic Ray Conf., Łódź,
Evgeniya Kravchenko XI Russian-Finnish Symposium on Radio Astronomy October 19, 2010 Pushchino, Russia Ultra High Energy Neutrinos and radio method of.
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
Astroparticle Physics (3/3)
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.
Point-like source searches with ANTARES RICAP Conference Rome, June 2007 Juan de Dios Zornoza (IFIC - Valencia)
Instrumentation and Methods in Astroparticle Physics Physics 801
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
GRBs with GLAST Tsvi Piran Racah Inst. of Jerusalem, Israel
Presentation transcript:

UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL

The acceleration challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Hillas, ARA&A (1984); Waxman 04]

The suspects Active Galactic Nuclei (steady):  ~ few requires L>10 47 erg/s Few, brightest AGN Gamma Ray Bursts (transient):  ~ 300 requires L>10 51 erg/s Average L  ~10 52 erg/s

The Suspects losses 1/  [Hillas 84; Arisaka 02]

Comments on “ Magnetars ” Newborn Neutron stars (Hypothesis) with: B~10 14 G,  ~10 4 /sec L EM ~10 50 erg/s for t<1 min. Some difficulties: Wind should penetrate envelope with < M sun entrainment Acceleration mechanism: Unknown NS ~1 M sun envelope EM wind [e.g. Blasi, Epstein, Olinto 00; Arons 02] [Waxman 04]

Gamma-ray Bursts M on ~1 Solar Mass BH Relativistic Outflow e - acceleration in Collisionless shocks MeV  ’s: L  ~10 52 erg/s  ~300 [Piran, Phys. Rep. 99; Meszaros, ARA&A 02; Waxman, Lec. Notes Phys. 598 (2003).] e - Synchrotron X-ray, UV Radio UHE p Acceleration

Proton/electron acceleration: ‘ 95 Protons Acceleration/expansion: Synchrotron losses: Particle spectrum: p energy production: Electrons MeV  ’ s: Optical depth:  spectrum:  energy production [Waxman 95, PRL 75, 386; ApJ 452, L1; Note: Constraints independent of details of acceleratiomn model (e.g. Gialis & Pelletier 04)]

1997: BeppoSAX (GRB afterglows) Detection of (predicted) X-ray, Optical & Radio “ afterglow ” Identification of “ host ” galaxies, ~2 Detailed tests of the model Size measurements [scintillation, VLBI, sub-rel.] X-ray to radio (synchrotron) spectra [e.g. Meszaros, ARA&A 02] [Waxman, Kulkarni & Frail 98; Taylor, Frail, Berger & Kulkarni 04; Frail, Waxman & Kulkarni 00; Berger, Kulkarni & Frail04] [e.g , Wijers & Galama 98]

Afterglow: UHECR implications L  =10 51 erg/s -> L  =10 52 erg/s Early optical afterglow: u B /u e ~1,  ~ Revised rates, energy 10/Gpc 3 yr -> 0.5/Gpc 3 yr E  =10 52 erg -> E  = erg [Zhang,Kobayashi, Meszaros 03; Soderberg, Ramirez-Ruiz 03] [Schmidt 01; Guetta, Piran, Waxman 03]

Proton/electron acceleration Protons Acceleration/expansion: Synchrotron losses: Particle spectrum: p energy production: Electrons MeV  ’ s: Optical depth:  spectrum:  energy production [Waxman 04] [Waxman 95] Afterglow

UHECR generation Galactic heavy nuclei X-Galactic protons X-Galactic protons Generation spectrum & rate (z evolution follows SFR): <10 19 eV Galactic heavy nuclei Fly ’ s Eye fit: J G ~E [Waxman 95; Bahcall & Waxman 03] [Watson 91, Nagano & Watson 00] ~10 19 eV

Model vs. Data [Bahcall & Waxman 03] Ruled out at 5 

“ GZK sphere ” AGN, Radio-galaxies  GRBs : For R GRB (z=0)~0.5/Gpc 3 yr Prediction: p  D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 03]

GRB Model Predictions >3x10 20 eV: Few, narrow spectrum sources; Fluctuations (no homogeneous GZK). Auger AGASA multiplets- statistical significance? [Miralda-Escude & Waxman 96] [Teshima 03; Finley & Westerhoff 04] [Watson 91, Cronin 93]

“ Generic ” GRB ’ s Weak dependence on model parameters [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez- Muniz & F. Halzen 99; Guetta, Spada & Waxman 01; Guetta, Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

Summary GRBs >10 19 eV protons (acceleration, rate) Predictions 10 3 km 2 area detectors experiments: HiRes, Auger, T.A., EUSO/OWL GRBs 100TeV ’ s Flux 1Gton detectors Experiments: Baikal, AMANDA IceCube, Antares, Nestor, NEMO detection GRBs: CR puzzle, GRB progenitors & physics physics:     appearance Lorentz Inv. ( ), Weak equivalence principle (10 -6 )

Direct size measurement: Scintillation Finite size, cosmological source: h crit. ~few x cm nene  d  d > Diffractive scintillation h [Frail, Waxman & Kulkarni 00]

“ Cannon balls ” Proper motion: D&D 2003: >1.4 mas for Obs.: Inconsistent with scintillation suppression [ Dado, Dar & De Rujula 02]