Presentation is loading. Please wait.

Presentation is loading. Please wait.

The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.

Similar presentations


Presentation on theme: "The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL."— Presentation transcript:

1 The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL

2 High energy  ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse)  physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources [10kt @ 1MeV  1Gton @ TeV,  TeV /  MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp   ’s  ’s]  physics

3 The 10 20 eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Waxman 95, 04, Norman et al. 95] AGN (Steady):  ~ 10 1  L>10 14 L Sun  few brightest ~1/100 Gpc 3  d >> 100Mpc  ?? AGN flares GRB (transient):  ~ 10 2.5  L>10 17 L Sun L  ~ 10 18 L Sun [Farrar & Gruzinov 08] [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95]

4 GRB: 10 20 L Sun, M BH ~1M sun, M~1M sun /s,  ~10 2.5 AGN: 10 14 L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~10 0.5 Source physics Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms

5 Clues: CR phenomenology Cosmic-ray E [GeV] log [dJ/dE] 1 10 6 10 E -2.7 E -3 Heavy Nuclei Protons Flattening, Near isotropy, Heavy  light (?) Galactic heavy (“hypernovae”  Z~10 to 10 19 eV) X-Galactic, ?Light [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

6 Constraints: Flux & Spectrum [Waxman 1995; Bahcall & Waxman 03] [Kashti & Waxman 08]  E sys /E~20% Particle acc.; SFR, AGN, GRB [Berezinsky et al. 08]

7 Clues: Anisotropy Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [Waxman, Fisher & Piran 1997] Biased (  source ~  gal for  gal >  gal ) [Kashti & Waxman 08] Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Few fold increase  >99% CL, but not 99.9% CL Correlation with AGN ? VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL  low-luminosity AGN? Simply trace LSS! [Auger collaboration 07] [George et al. 08]

8 >10 19 eV cosmic rays: Clue summary Spectrum (+X max )  likely X-Galactic protons Anisotropy + Spectrum  likely “ Conventional ” sources L constraint  likely Transient sources E p 2 dN/dE p ~ 0.7x10 44 erg/Mpc 3 yr What next for Auger? Identify (narrow spectrum) point source(s)?

9 HE  Astronomy p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics E 2 dn/dE=10 44 erg/Mpc 3 yr +   p <1: If X-G p ’ s:  Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01]

10 AGN models?? BBR05

11 Experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km 3 IceCube: +660/yr OM (05/06, 06/07) 4800 OM=1 km 3 s - Mediterranean Antares: 10 lines (Nov 07), 750 OM  0.05 km 3 Nestor: (?)  0.1 km 3 km3Net: R&D  1 km 3 UHE: Radio Air shower Aura, Ariana (in Ice) Auger (  ) ANITA (Balloon) EUSO (?) LOFAR

12 Generic GRB fireball ’ s If: Baryonic jet, internal shocks (Weak dependence on model parameters) Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

13 The current limit [Achterberg et al. 07 (The IceCube collaboration)]

14 - physics & astro-physics  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1  appearance experiment GRBs: -  timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of  ’ s (and  ’ s)  e :  :  = 1:1:1 (E>E 0 )  1:2:2  GRBs: E 0 ~10 15 eV Combining E E 0 flavor measurements may constrain CPV [Sin  13 Cos  ] [Waxman & Bahcall 97] [Rachen & Meszaros 98; Kashti & Waxman 05] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & Waxman 05]

15 Outlook Particle+Astro-phys. Open Q ’ s - >10 11 GeV particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ … ) Energy extraction from BH accretion Relativistic plasma physics - “ Conventional ” astrophysics (starburst ISM) -       appearance  Timing  LI to 1:10 16 ; WEP to 1:10 6 Flavor ratios  CPV New HE , CR and detectors >10 3 km 2 hybrid >10 19 eV CR detectors ~1 km 3 (=1Gton) 1-1000TeV detectors >>1 km 3 [radio, … ] >>1000TeV detectors 10MeV—10GeV  -ray satellite (AGILE, GLAST) >0.1TeV (ground based)  -ray telescopes (Milagro, HESS, MAGIC, VERITAS) Identified point sources Diffuse

16 Composition clues HiRes 2005

17 GRB proton/electron acceleration Electrons MeV  ’ s:   <1: e - (  ) spectrum: e - (  )  energy production [Waxman 95, 04] Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production:

18 The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

19 GRB Model Predictions [Miralda-Escude & Waxman 96]

20

21 AMANDA & IceCube

22 The Mediterranean effort ANTARES (NESTOR, NEMO)  KM3NeT

23 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler M82 M81

24 A lower bound: Star bursts Star burst galaxies: - Star Formation Rate ~10 3 M sun /yr >> 1 M sun /yr “ normal ” (MW) - Density ~10 3 /cc >> 1/cc “ normal ” - B ~1 mG >> 1  G “ normal ” Most stars formed in (z>1.5) star bursts High density + B: CR e - ’ s lose all energy to synchrotron radiation CR p ’ s lose all energy to  production [Loeb & Waxman 06] [Quataert et al. 06]

25 Synchrotron radio  calibration [Loeb & Waxman 06]


Download ppt "The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL."

Similar presentations


Ads by Google