Review of Electromagnetism

Slides:



Advertisements
Similar presentations
Magnetic field.
Advertisements

Chapter 31 Faraday’s Law.
Induced Voltages And Inductance Chapter 20 Hans Christian Oersted.
14 Electromagnetism Chapter Topics Covered in Chapter 14
Magnetism and Electromagnetic Induction
Magnetic Circuits and Transformers
Electricity and Magnetism Electromagnetic Induction Mr D. Patterson.
Chapter 17 Electromagnetic Induction. The prime link between electricity and magnetism is… MOTION.
Copyright © 2009 Pearson Education, Inc. Lecture 9 – Electromagnetic Induction.
Electromagnetic Induction
Chapter 31 Faraday’s Law.
Chapter 20: Induced Voltages and Inductances Induced Emf and Magnetic Flux Homework assignment : 17,18,57,25,34,66  Discovery of induction.
AP Physics C Montwood High School R. Casao
Magnetic and Electromagnetic Fields
Chapter 29 Electromagnetic Induction and Faraday’s Law
Prepared By: Shakil Raiman.  If a current passed through a piece of wire held at right angles to the magnetic field of a magnet the wire will move. This.
Electromagnetic Induction What’s Next? Electromagnetic Induction Faraday’s Discovery Electromotive Force Magnetic Flux Electric Generators Lenz’s Law.
MUZAIDI BIN MARZUKI Chapter 4: Electromagnetic.
Chapter 16 DC Generators.
Lect. 15: Faraday’s Law and Induction
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Magnetic Flux and Faraday’s Law of Induction. Questions 1.What is the name of the disturbance caused by electricity moving through matter? 2.How does.
Electromagnetism Topics Covered in Chapter 14: 14-1: Ampere-turns of Magnetomotive Force (mmf) 14-2: Field Intensity (H) 14-3: B-H Magnetization Curve.
Electromagnetic Induction
Electromagnetic Induction
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment A primary coil is connected to a battery and a secondary coil is connected to an ammeter.
Magnetism 1. 2 Magnetic fields can be caused in three different ways 1. A moving electrical charge such as a wire with current flowing in it 2. By electrons.
Electromagnetism By Bao Tran. Electromagnetic induction  Electromagnetic induction is a process in which a conductor cuts through a stationary magnetic.
General electric flux definition
1 Chapter 30: Induction and Inductance Introduction What are we going to talk about in chapter 31: A change of magnetic flux through a conducting loop.
Chapter 31 Faraday’s Law.
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
Induced Voltages and Inductance
Electromagnetic Induction Create electric current from changing magnetic fields.
Fundamentals of Electromagnetics and Electromechanics
Day 3: Eddy Currents Back EMF in Motors Eddy Currents Nature of Eddy Currents.
Induced Voltage and Inductance
Lecture 14 Magnetic Domains Induced EMF Faraday’s Law Induction Motional EMF.
MAGNETIC INDUCTION MAGNETUIC FLUX: FARADAY’S LAW, INDUCED EMF:
Faraday’s Law and Induction
Chapter 31 Faraday’s Law Electricity generator, or from B to E. 1.Battery  Chemical emf 2.Motional emf 3.Faraday’s Law of Induction 4.Lentz Law about.
Copyright © 2009 Pearson Education, Inc. Chapter 32: Inductance, Electromagnetic Oscillations, and AC Circuits.
Induced Voltages and Inductance
Chapter 31 Faraday’s Law. Faraday’s Law of Induction – Statements The emf induced in a circuit is directly proportional to the time rate of change of.
Chapter 31 Faraday’s Law.
EKT 103 Magnetism & Electromagnetism CHAPTER 2 1 By: Dr Rosemizi Abd Rahim.
Magnetism & Electromagnetism 1 By: Dr Rosemizi Abd Rahim Click here to watch the magnetism and electromagnetism animation video
Tuesday April 19, PHYS , Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #18 Tuesday April 19, 2011 Dr. Andrew Brandt Chapter 29 Lenz Law.
3/17/2014 PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer.
Chapter 30 Lecture 30: Faraday’s Law and Induction: I.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
AC Generators generators are devices which convert mechanical energy into electrical energy.
Magnetism Unit 12. Magnets Magnet – a material in which the spinning electrons of its atom are aligned with one another Magnet – a material in which the.
Electromagnetic Induction
BASIC ELECTRICAL TECHNOLOGY Chapter 4 – Magnetic Circuits
Unit G485: Fields, Particles and Frontiers of Physics Revision.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
PHY 102: Lecture Induced EMF, Induced Current 7.2 Motional EMF
 Electromagnetic Induction – The production of an emf (the energy per unit charge supplied by a source of electric current) in a conducting circuit by.
Electromagnetic Induction
1 Figure 17.1 A Rotating Electric Machine. 2 Configurations of the three types of electric machines Table 17.1.
Chapter 21 Magnetic Induction and Chapter 22.9: Transformers.
ELECTRICAL MACHINES Electrical Machines.
BASIC ELECTRICAL TECHNOLOGY Chapter 4 – Magnetic Circuits
DC Generators.
Warm-up Why do loops of wire in a motor rotate?
Magnetic Circuits.

Electrical Machines (EELE 3351)
Chapter 31 Faraday’s Law 31.1 Faraday’s Law of Induction
Presentation transcript:

Review of Electromagnetism FKEE, KUKTEM Review of Electromagnetism BEE2123 ELECTRICAL MACHINES Muhamad Zahim Ext: 2312 MZS FKEE, UMP Muhamad Zahim Sujod

Learning Outcomes At the end of the chapter, students should be able to: Understand the fundamental laws in the dynamic magnetic systems and their relation to the electrical machines. MZS FKEE, UMP

Introduction to Electrical Machines An electric machine is a device which converts electrical power (voltages and currents) into mechanical power (torque and rotational speed), and/or vice versa. A motor describes a machine which converts electrical power to mechanical power; a generator (or alternator) converts mechanical power to electrical power. MZS FKEE, UMP

Introduction to Electrical Machine Many electric machines are capable of performing both as motors and generators; The capability of a machine performing as one or the other is often through the action of a magnetic field, to perform such conversions. MZS FKEE, UMP

Introduction to Electrical Machine To understand how an electrical machines works, the key is to understand how the electromagnet works. The principles of magnetism play an important role in the operation of an electrical machines. MZS FKEE, UMP

Review of Electromagnetism The basic idea behind an electromagnet is extremely simple: a magnetic field around the conductor can be produced when current flows through a conductor. In other word, the magnetic field only exists when electric current is flowing By using this simple principle, you can create all sorts of things, including motors, solenoids, read/write heads for hard disks and tape drives, speakers, and so on MZS FKEE, UMP

Magnetic Field Unlike electric fields (which start on +q and end on –q), magnetic field encircle their current source. field is perpendicular to the wire and that the field's direction depends on which direction the current is flowing in the wire A circular magnetic field develops around the wire follows right-hand rules The field weakens as you move away from the wire Ampere’s circuital law - the integration path length is longer MZS FKEE, UMP

Example of Electromagnetic An electromagnet can be made by winding the conductor into a coil and applying a DC voltage. The lines of flux, formed by current flow through the conductor, combine to produce a larger and stronger magnetic field. The center of the coil is known as the core. In this simple electromagnet the core is air. MZS FKEE, UMP

Adding an Iron Core Iron is a better conductor of flux than air. The air core of an electromagnet can be replaced by a piece of soft iron. When a piece of iron is placed in the center of the coil more lines of flux can flow and the magnetic field is strengthened. MZS FKEE, UMP

Strength of Magnetic Field (Cont) Because the magnetic field around a wire is circular and perpendicular to the wire, an easy way to amplify the wire's magnetic field is to coil the wire The strength of the magnetic field in the DC electromagnet can be increased by increasing the number of turns in the coil. The greater the number of turns the stronger the magnetic field will be. MZS FKEE, UMP

Faraday’s Law and Lenz’s Law  a b Faraday’s Law : If a magnetic flux, , in a coil is changing in time (n turns), hence a voltage, Vab is induced Lenz’s Law : if the loop is closed, a connected to b, the current would flow in the direction to produce the flux inside the coil opposing the original flux change. (in other words, Lenz’s Law will determine the polarity of the induced voltage) V = induced voltage N = no of turns in coil  = change of flux in coil t = time interval If no turns : MZS FKEE, UMP

Faraday’s Law The effect of magnetic field: Induced Voltage from a Time Changing Magnetic Field Production of Induced Force on a Wire Induced Voltage on a Conductor Moving in a Magnetic Field MZS FKEE, UMP

Voltage Induced from a time changing magnetic field MZS FKEE, UMP

Voltage Induced in a conductor moving in a magnetic field Faraday’s Law for moving conductors : For coils in which wire (conductor) is moving thru the magnetic flux, an alternate approach is to separate the voltage induced by time-varying flux from the voltage induced in a moving conductor. This situation is indicates the presence of an electromagnetic field in a wire (conductor). This voltage described by Faraday’s Law is called as the flux cutting or Electromotive force, or emf. The value of the induced voltage is given by E = Blv where E = induced voltage (V) B = flux density (T) l = active length of the conductor in the magnetic field (m) v = relative speed of the conductor (m/s) The polarity of induced voltage is given by the right-hand rule. MZS FKEE, UMP

Induced Force The electrical circuit consists of battery, resistor, two stationary rails, and movable bar that can roll or slide along the rails with electrical contact. When switch is closed: Current will not start immediately as inductance of the circuit. (However time constant L/R is very small). Hence, current quickly reach V/R. Force is exerted on the bar due to interaction between current and magnetic flux to the right and made the bar move with certain velocity. The mechanical power out of the bar. Force induced on the conductor: F = ilB Unit: (N) The direction of force is given by the right-hand rule. MZS FKEE, UMP

Induced Force (Cont) The motion of the bar produces an electromagnetic force. The polarity of the emf is +ve where the current enters the moving bars. The moving bar generates a ‘back’ emf that opposes the current. The instantaneous electrical power into the bar = mechanical output power MZS FKEE, UMP

Production of a Magnetic Field The production of a magnetic field by a current is determine by Ampere’s law: H = magnetic field intensity dl = differential element of length along the path of integration Magnetic field intensity: lc = mean path length MZS FKEE, UMP

Production of a Magnetic Field The strength of the magnetic field flux produced in the core also depends on the material of the core. Magnetic flux density: u = magnetic permeability of material u0 = permeability of free space ur = relative permeability of material MZS FKEE, UMP

Production of a Magnetic Field Total flux: MZS FKEE, UMP

Magnetic Circuit Electric circuit equation: Magnetic circuit equation: Analogy: Electric circuit & Magnetic circuit Electric circuit equation: Magnetic circuit equation: MZS FKEE, UMP

Example A ferromagnetic core is shown in Figure. Three sides of this core are of uniform width, while the fourth side is somewhat thinner. The depth of the core (into the page) is 10cm, and the other dimensions are shown in the figure. There is a 200 turn coil wrapped around the left side of the core. Assuming relative permeability is 2500, how much flux will be produced by a 1 A input current? MZS FKEE, UMP

Magnetic saturation & hysteresis in ac magnetic field Iron becomes magnetically saturated Magnetism increase as magnetic field magnetized unmagnetized iron a b c d Applied field is reduced; the magnetism reduced thru diff. curve since iron tends to retains magnetized state - hence produced permanent magnet, Residual Flux, res AC increased in negative direction, magnetic field reversed , the iron reversely magnetized until saturated again If continue apply ac current, curve continue to follow S-shaped curve (hysteresis curve) The area enclosed by hysteresis curve is energy loss per unit volume per cycle – heats the iron and is one reason why electric machines become hot Therefore, it is required to select magnetic materials that have a narrow hysteresis loop Hm Magnetic field density Bm unmagnetized Material MZS FKEE, UMP

Hysteresis Loss During a cycle of variation of i (hence H), there is a net energy flow from the source to the coil-core assembly and return to the source. Energy flowing is greater than energy returned. This energy loss goes to heat the core. The loss of power in the core due to the hysteresis effect is called hysteresis loss. MZS FKEE, UMP

Eddy Current Loss Voltage will be induced in the path of magnetic core because of time variation of flux enclosed by the path. A current, known as an eddy current will flow around the path. Because core has resistance, a power loss will be cause by the eddy current and appear as heat in the core. MZS FKEE, UMP

Eddy Current Loss Eddy current can be reduced in 2 ways: Adding a few percent of silicon to iron to increase the resistivity. Laminate core with thin laminations and insulated from each other. Hysteresis loss + eddy current loss = Core loss MZS FKEE, UMP