MACHe3: Prototype of a bolometric detector based on superfluid 3 He for the search of non-baryonic Dark Matter C. Winkelmann J. Elbs E. Collin Yu. Bunkov.

Slides:



Advertisements
Similar presentations
MICROKELVIN: JRA3 Fundamental physics for the study of cosmological analogues in the laboratory.
Advertisements

Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
The PICASSO experiment - searching for cold dark matter
A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer Mentor: Dr. Lauren Hsu [FNAL, CDMS] September.
Dark Matter Searches with Dual-Phase Noble Liquid Detectors Imperial HEP 1st Year Talks ‒ Evidence and Motivation ‒ Dual-phase Noble Liquid Detectors ‒
Report from Low Background Experiments Geant4 Collaboration Workshop 10 September 2012 Dennis Wright (SLAC)
Particle Physics and Cosmology
Particle Physics and Cosmology
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Dark Matter Overview Harry Nelson UCSB INPAC Oct. 4, 2003.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Particle Dark Matter : Evidence, Candidates and Experiments
What’s the Matter in the Universe? Richard Schnee Syracuse University Quarknet Lecture July 13, 2012 The Search for Dark Matter.
Dark Matter  Evidence for Dark Matter  Dark Matter Candidates  How to search for DM particles?  Recent puzzling observations (PAMELA, ATIC, EGRET)
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
Yu. Bunkov E. Collin J. Elbs H. Godfrin The status of new Dark Matter project ULTIMA Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France Cosmology in.
Form Factor Dark Matter Brian Feldstein Boston University In Preparation -B.F., L. Fitzpatrick and E. Katz In Preparation -B.F., L. Fitzpatrick, E. Katz.
THE UNSEEN EFFECT OF DARK MATTER Max Ehrhardt Physics 335 Final Presentation 12/1/04.
A Direction Sensitive Dark Matter Detector
The Dark Side of the Universe What is dark matter? Who cares?
Topological defects creation at fast transition: Kibble mechanism and Zurek scenario Experiments with neutrons: Vortex creation in 3He+n reaction Dark.
Direct Dark Matter Searches
The Universe  What do we know about it  age: 14.6 billion years  Evolved from Big Bang  chemical composition  Structures.
Dark Matter Detection with Liquid Xenon Masahiro Morii Harvard University Laboratory for Particle Physics and Cosmology 21 August
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
The AMS Transition Radiation Detector and the Search for Dark Matter Gianpaolo Carosi Lab for Nuclear Science, MIT The AMS Collaboration Lake Louise Winter.
A Study of Background Particles for the Implementation of a Neutron Veto into SuperCDMS Johanna-Laina Fischer 1, Dr. Lauren Hsu 2 1 Physics and Space Sciences.
Cosmo02, Chicago september 2002 Maryvonne De Jésus 1 DARK-MATTER Direct Detection Maryvonne De Jésus IPN-Lyon/CNRS France
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
A Lightning Review of Dark Matter R.L. Cooper
Theoretical Issues in Astro Particle Physics J.W. van Holten April 26, 2004.
Astronomy 1143 – Spring 2014 Lecture 30: Dark Matter Revisted…..
DARK MATTER IN THE UNIVERSE? PRESENTED BY L. KULL AT THE R.H.FLEET SCIENCE CENTER December 14,2005.
Indirect Detection Of Dark Matter
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
D. Santos Large TPC Workshop – LPNHE 21/12/2004 Daniel Santos & Emmanuel Moulin Laboratoire de Physique Subatomique et de Cosmologie Grenoble MIMAC-He3.
Ray Bunker (UCSB) – APS – April 17 th, 2005 CDMS SUF Run 21 Low-Mass WIMP Search Ray Bunker Jan 17 th -DOE UCSB Review.
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
Detecting the Directionality of Dark Matter via “Columnar Recombination” (CR) Technique An attractive, natural candidate for Dark Matter is the WIMP –
From Edelweiss I to Edelweiss II
MIMAC MIcro-tpc MAtrix of Chambers ( 3He + CF4) A Large TPC for non baryonic Dark Matter search Daniel Santos Laboratoire de Physique Subatomique et.
Direct Search for Dark Matter with XENON100
MIcro-tpc Matrix of Cells of He3
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
An interesting candidate?
UK Dark Matter Collaboration
Irina Bavykina, MPI f. Physik
Non-Baryonic Dark Matter: From the CMB and axial direct detection
Generating Neutrino Mass & Electroweak Scale Radiatively
Direct Detection of Dark Matter
John Kelley IceCube Journal Club 27 February 2008
Christopher M. Savage University of Michigan – Ann Arbor
UCLA High Energy & Astro-Particle (HEAP) Seminar
Search for Dark Matter physics 805 fall 2008.
Dark Matter Search with Stilbene Scintillator
Supersymmetric Dark Matter
LUX: Shedding Light on Dark Matter
Detecting WIMPs using Au-DNA Microarrays
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
The Estimated Limits For A 5g LE-Ge Detector
Dark Matter Detection,Models and Constraints
Presentation transcript:

MACHe3: Prototype of a bolometric detector based on superfluid 3 He for the search of non-baryonic Dark Matter C. Winkelmann J. Elbs E. Collin Yu. Bunkov H. Godfrin E. Moulin J. Macias-Perez D. Santos MACHe3: (CRTBT / LPSC) MAtrix of Cells of superfluid Helium-3

Plan de l’exposé IMasse manquante de l’Univers et Matière Sombre non-baryonique II 3 He superfluide et thermométrie par Fil Vibrant aux ultra-basses températures III Détection bolométrique et calibration du détecteur IVSpectres de détection: neutrons, muons et électrons de basse énergie VPerspectives pour la recherche de Matière Sombre

Missing Mass and non-baryonic Dark Matter Flat Universe  ≈  c =5.1 GeV/m 3  r  m   ≈ 1.0 Energy density of matter in the Universe  M ≈ 1.6 GeV/m 3  m  ≈ 0.3   ≈ 0.7 Knop et al. (2003) Spergel et al. (2003) Allen et al. (2002)

Open questions in cosmology:  Presence of large scale structures imposes  baryons ≈ GeV/m 3  Anomalies of galactic rotation curves Standard Cold Dark Matter Simulation VIRGO Vitesse de rotation (km/s) R 0 =8.5 kpc Honma et Sofue (1996) Rotation velocity km/s Measured Visible Matter contribution

Non-baryonic Dark Matter: W eakly I nteracting M assive P article s Supersymmetric extension of Standard Model provides a candidate: neutralino   stable (except annihilation)  relic density  massive (~ 100 GeV/c 2 )  Missing Mass  neutral in charge and color  Weak interaction cross section with ordinary matter Direct detection ~ Scalar interaction Edelweiss, CDMS,CRESST, Zeplin Ge, Si, CaWO 4, Xe Axial interaction DAMA/Libra, Picasso, Simple, MACHe3 NaI, F, 3 He

Project of bolometric detection based on 3 He Spin 1/2 nucleus  axial interaction with neutralino High transparency to  -rays Nuclear neutron capture reaction Limited recoil energy range: E recoil < 6 keV At ultra-low temperature (100 K, superfluid) Specific heat  exp(-/k B T) Absolute purity Liquid 3 He but: expensive, technologically challenging, …

CDMS 2004 preliminary MACHe3 Project: Potential of a bolometric detector involving 10 kg / 1000 cells  reduction of neutron, muon and  ray background  (Mayet et al., NIMA 2000). Preliminary analysis by simulation (LPSC) Mayet et al., PLB 2002

Vibrating wire thermometry at ultra-low temperatures

3 He superfluide fermion: (2p + n) + 2e - A T c ~ mK  Transition superfluide (onde-p)  Phases multiples  Phase B isotrope, de type BCS  (k)=   excitations: quasiparticules n qp exp(-/k B T) fraction superfluide + fraction normale vide renormaliségaz dilué de quasiparticules liquide jusqu’à T=0 (p <34 bars) EFEF T<<T c 

The Vibrating Wire Resonator H I 0 e i  t Induced voltage V 3 mm NbTi Monofilament (4.5 m) (Photo E. Collin) V (  V)

Hydrodynamics and slip  Fermi liquid 3 He liquide: T -2 hydrodynamic analysis (Stokes; Carless et al., JLTP 1983)  At low temperatures: corrections for finite viscous mean free path   Slip effect (Højgaard Jensen et al., JLTP 1980)  In the superfluid: Andreev scattering of quasiparticles on surfaces  « Quantum » slip (Einzel et al., PRL 1984; Fisher et al., PRL 1989) x   (x)  bulk /3 wallbulk Superfluid gap

 (T)/  (Tc) (21 bars) Ono et al., JLTP 1982 Towards a temperature standard < mK: Effective viscosity and thermometry CW et al., JLTP (2004)  Temperature calibration / platinum NMR  Extraction of an effective viscosity  eff (p,T)  appliable to other VWRs Ta, 125  m

Amortissement Fil Vibrant  n qp  pFpF -p F E p kBTkBT quasi-particule (v g.p>0) quasi-trou (v g.p<0) Relation de dispersion BCS vgvg Gaz balistique de quasiparticules v << v g

Ballistic quasiparticle gas  +p F v -p F v pFpF -p F E p Doppler shift of dispersion curves selective scattering of quasiparticles (Andreev scattering) (Fisher et al., PRL 1989) Non-linear damping v rms (mm/s) Excitation force (pN)

Bolometric detection and calibration A B C H Stycast sealing Copper support connected to silver sinters Gold sheet with 57 Co Copper sheet (25  m) Orifice for thermali- sation (200  m ) 15 mm 6 mm 3-cell bolometer VWRs (4.5 et 13  m)

Response to an instantaneous heat release A Response time of the thermometer Dynamical response of the thermometer W ret (Hz) Thermal equilibrium time Relaxation time of the bolometer Instantaneous heat release time (s)

Bolometric calibration coefficient Specific heat of quasiparticle gas Vibrating Wire damping Calibration coefficient We neglect - Adsorbed layers - Gap reduction close to surfaces - Bosonic modes of condensate  non-exponential dependence of U on T Non-linear dependence of W on velocity  (T,v) +

C (j/K) T (mK) C qp C ABS (Halperin) W (Hz) Heat capacities C add (Greywall)

Bolometric calibration by pulsed heating Energy injection by heater-VWR  linear dependence H(U puls ) Bradley et al., PRL 1995; Bäuerle et al., PRB 1998 Intrinsic losses in heater  Lost energy fraction Amplitude (a.u.) W mes (Hz) H I V heater thermometer time (s)

 1/√T Bolometric calibration by pulsed heating

Detection spectra: neutrons, muons and low energy electrons Comparison to known energy sources Characterization of the detector for different types of interaction - ionizing interaction (electron recoil): predominant for light and charged particles (rays, electrons, muons) - non-ionizing interaction (nuclear recoil): important for massive and neutral particles (WIMP, elastic neutron scattering) Ionization, secondary electrons  excited atomic and molecular states - heat - ultraviolet scintillation

Heat Ionization/scintillation Discrimination of electron recoils Electron recoil Nuclear recoil

Neutrons nuclear neutron capture Elastic diffusion m 3He ≈ m n  fast thermalisation of neutrons fast neutron thermalisation and nuclear capture :  good neutron background discrimination

Detection spectrum at W base =0.7 Hz Coups good agreement with description of detector Heat deposition : ( Bäuerle et al., Nature 1995) Energy deficit of 15 % - Scintillation ? - Topological defects ? p=0 bar Neutrons 70  m10  m 1  m p 3H-3H- Meyer, Sloan, JLTP 1998 Moderated AmBe source

Low energy electrons Radioactive decay Source is in situ (cell B) E (keV) 57 Co emission Pile-up Electrons produced in gold sheet Moulin et al., to appear  rays Internal conversion electrons Auger electrons

Detection of low energy electrons from 57 Co Detection threshold and resolution at keV level  Expected energy range of neutralino signal reached W mes (mHz) time (s)

cell A (without source) cell B (with source) Electron detection spectrum resolution of low energy emission spectrum of 57 Co Comparison to 14 keV peak with bolometric calibration  Energy deficit of f UV (e -,14keV)≈265% UV Scintillation Energy dependence of scintillated fraction? f UV (e - >100keV)≈50% (McKinsey et al., NIMA 2002) S/B>5 Analysis LPSC, d5, B=100 mT, W0=430 mHz

Cosmic muons Cosmic muon flux: Surface 150 / m 2.s Underground (Gran Sasso) 2.310 -4 / m 2.s Large cross section (100 barns)  linear energy deposition (ionisation) dE/dx=1.9[g/cm3]MeV/cm Expected energy deposition in bolometers ~ 70 keV Coincident detection across cells coincidence W mes (Hz) time (s)

Analysis and simulation LPSC (GEANT4) Detection of cosmic muons: good agreement experience/simulation if f UV (muons) ≈ 25 %

rays (- 3 He) < 1-2 barn (diffusion Compton) << high-Z materials (photoelectric effect) Difficulty of a characterization by external source (Bradley et al., PRL 1995) 57 Co source: emission at 122 and 136 keV  no Compton edge in detection specta cell A (without source) cell B (with source) Analysis LPSC

Outlook for Dark Matter search Detector project (Mayet et al., NIMA 2002) 10 3 cells of 5 3 cm 3 10 kg 3 He target material Underground laboratory 5 cm

Parallel detection of scintillation Moulin et al., IVth. Int. Conf. Cosmo. Marseille 2004 GEANT4 Simulation (LPSC): Intrinsic rejection of neutrons and rays  Parallel ray discrimination necessary Ultraviolet scintillation ? Ionisation measurement ?

Alternative thermometry Microfabricated VWRs Si/Al (≤10 m) (Triquenaux et al., Physica B 2000) Thermometry by NMR H S Quantum coherent state of precession of magnetization Incident particle 100  K NMR signal 3 He Homogeneous Precession Domain - NMR 4 He, 30 mbar

Conclusions Experimental characterization of a prototype of a bolometric detector based on superfluid 3 He - Vibrating Wire thermometry - Bolometry Detection spectra of neutrons, low energy electrons and muons - neutralino detection threshold reached - good understanding of the detector Estimation of the scintillation yield of the irradiated superfluid  discrimination of electron recoils