8/15/12 We want to see if running with weights on improves speed. Using 5, 10, 15 lb vests – be able to tell the 4 parts of the experiment that is needed.

Slides:



Advertisements
Similar presentations
 We can’t control Earth’s motion, but we have learned the rules by which it moves. The study of nature’s rules is what this course is about. Understanding.
Advertisements

Unit Outline--Topics What is Physics? Branches of Science
How to Use This Presentation
Unit Outline--Topics What is Physics? Branches of Science
Analyzing Data Chapter 2.
The Branches of Physics
Measurements and Calculations
College Physics Chapter 1 Introduction.
Objectives Chapter 1 Describe the processes of the scientific method.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 2 Measurements in Experiments Chapter 1 Objectives List basic.
The Science of PhysicsSection 1 Preview Section 1 What Is Physics?What Is Physics? Section 2 Measurements in ExperimentsMeasurements in Experiments Section.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu The Science of Physics Chapter 1 Table of Contents Section 1 What.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu To View the presentation as a slideshow with effects select “View”
Lesson Starter Look at the specifications for electronic balances. How do the instruments vary in precision? Discuss using a beaker to measure volume versus.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Measurements in Experiments Chapter 1 Objectives List basic.
Chapter 1. Introduction A good understanding of geometry and trigonometry will help solve almost all the problems involved in this course. Physics like.
Essentials of College Physics --Serway/Vuille
Objectives Distinguish between accuracy and precision. Determine the number of significant figures in measurements. Perform mathematical operations involving.
The Science of Physics Chapter 1 Holt. 1.1 What Is Physics? Physics is the scientific study of matter and energy and how they interact with each other.matter.
Introduction to Physics. Intro to physics  How do you feel about physics?  What are your impressions of it?  What are you excited about?  What are.
© Houghton Mifflin Harcourt Publishing Company The student is expected to: Chapter 1 Section 1 What Is Physics? TEKS 2B know that scientific hypotheses.
Chapter 1 Table of Contents Section 1 What Is Physics?
Section 1 What Is Physics? Preview Objectives Physics The Scientific Method Models Hypotheses Controlled Experiments Chapter 1.
Chapter 1.1 Use mathematical tools to measure and predict. Apply accuracy and precision when measuring. Display and evaluate data graphically. Chapter.
Physics Chapter One: Measurement. 1.1 – The Science of Physics Introduction Refer to the picture on p. 2 of your book. Follow along as I read the introduction.
Chapter 1 Introduction. Theories and Experiments The goal of physics is to develop theories based on experiments A theory is a “guess,” expressed mathematically,
Preview Lesson Starter Objectives Accuracy and Precision Significant Figures Scientific Notation Using Sample Problems Direct Proportions Inverse Proportions.
Chapter 1 Preview Objectives Physics The Scientific Method Models
Objectives Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations. Describe the differences between.
Introduction to Physics The Science of Physics Expectations: 1.Learn about the branches of physics. 2.Learn useful tools for working with measurements.
Measurements in Experiments Chapter 1-2. Numerical Measurements Are used to perform science experiments. Gives number and dimensional unit  Example :
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu To View the presentation as a slideshow with effects select “View”
Section 1–2: Measurements in Experiments Physics Pages 10–20.
Section 1–3: The Language of Physics Coach Kelsoe Physics Pages 21–25.
© Houghton Mifflin Harcourt Publishing Company Section 1 What Is Physics? Preview Objectives Physics The Scientific Method Models Hypotheses Controlled.
Measurements contain uncertainties that affect how a calculated result is presented. Section 3: Uncertainty in Data K What I Know W What I Want to Find.
Chapter 2 © Houghton Mifflin Harcourt Publishing Company Scientific Method The scientific method is a logical approach to solving problems by observing.
In this chapter you will:  Use mathematical tools to measure and predict.  Apply accuracy and precision when measuring.  Display and evaluate data graphically.
© Houghton Mifflin Harcourt Publishing Company The student is expected to: Chapter 1 Section 1 What Is Physics? TEKS 2B know that scientific hypotheses.
Objectives Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations. Describe the differences between.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu The Science of Physics Chapter 1 Table of Contents Section 1 What.
In your notebooks, title the first page “Bellwork Week 2”
Primetime Name three areas of physics and what are studied in those areas. Name the parts of an experiment.
Chapter 2 Preview Objectives Scientific Method
Chapter 1 Introduction.
Chapter 1 Introduction Ying Yi PhD PHYS HCC.
How to Use This Presentation
How to Use This Presentation
Section 1 Scientific Method
Lesson 1.3 The Language of Physics
Lesson 1.2 Measurements in Physics
Chapter 1 Table of Contents Section 1 What Is Physics?
Objectives Describe the purpose of the scientific method.
Chapter 1 Table of Contents Section 1 What Is Physics?
How to Use This Presentation
Chapter 2 Table of Contents Section 1 Scientific Method
Preview Section 1 What Is Physics?
College Physics Chapter 1 Introduction.
How to Use This Presentation
How to Use This Presentation
Click the mouse or press the spacebar to continue.
Preview Section 1 What Is Physics?
Mathematics, the Language of Physics
Chapter 2 Preview Objectives Scientific Method
Chapter 1 Preview Objectives Physics The Scientific Method Models
Preview Section 1 What Is Physics?
Chapter #1 Ms. Hanan Anabusi
Presentation transcript:

8/15/12 We want to see if running with weights on improves speed. Using 5, 10, 15 lb vests – be able to tell the 4 parts of the experiment that is needed.

Questions What is the IV and DV? How many levels of the IV should we have? What should be constant? What is the control? What kind of graph should we use?

Types of Physics

Chapter 1 Hypotheses, continued Section 1 What Is Physics? Hypotheses, continued Galileo modeled the behavior of falling objects in order to develop a hypothesis about how objects fall. If heavier objects fell faster than slower ones,would two bricks of different masses tied together fall slower (b) or faster (c) than the heavy brick alone (a)? Because of this contradiction, Galileo hypothesized instead that all objects fall at the same rate, as in (d).

Section 2 Measurements in Experiments Chapter 1 SI Standards

Section 2 Measurements in Experiments Chapter 1 SI Prefixes

Chapter 1 Dimensions and Units Section 2 Measurements in Experiments Chapter 1 Dimensions and Units Measurements of physical quantities must be expressed in units that match the dimensions of that quantity. In addition to having the correct dimension, measurements used in calculations should also have the same units. For example, when determining area by multiplying length and width, be sure the measurements are expressed in the same units.

Chapter 1 Sample Problem Section 2 Measurements in Experiments Chapter 1 Sample Problem A typical bacterium has a mass of about 2.0 fg. Express this measurement in terms of grams and kilograms. Given: mass = 2.0 fg Unknown: mass = ? g mass = ? kg

Sample Problem, continued Section 2 Measurements in Experiments Chapter 1 Sample Problem, continued Build conversion factors from the relationships given in Table 3 of the textbook. Two possibilities are: Only the first one will cancel the units of femtograms to give units of grams.

Sample Problem, continued Section 2 Measurements in Experiments Chapter 1 Sample Problem, continued Take the previous answer, and use a similar process to cancel the units of grams to give units of kilograms.

Accuracy and Precision Section 2 Measurements in Experiments Chapter 1 Accuracy and Precision Accuracy is a description of how close a measurement is to the correct or accepted value of the quantity measured. Precision is the degree of exactness of a measurement. A numeric measure of confidence in a measurement or result is known as uncertainty. A lower uncertainty indicates greater confidence.

Chapter 1 Significant Figures Section 2 Measurements in Experiments Chapter 1 Significant Figures It is important to record the precision of your measurements so that other people can understand and interpret your results. A common convention used in science to indicate precision is known as significant figures. Significant figures are those digits in a measurement that are known with certainty plus the first digit that is uncertain.

Rules for Determining Significant Zeros Section 2 Measurements in Experiments Chapter 1 Rules for Determining Significant Zeros

Rules for Calculating with Significant Figures Section 2 Measurements in Experiments Chapter 1 Rules for Calculating with Significant Figures

Mathematics and Physics Section 3 The Language of Physics Chapter 1 Mathematics and Physics Tables, graphs, and equations can make data easier to understand. For example, consider an experiment to test Galileo’s hypothesis that all objects fall at the same rate in the absence of air resistance. In this experiment, a table-tennis ball and a golf ball are dropped in a vacuum. The results are recorded as a set of numbers corresponding to the times of the fall and the distance each ball falls. A convenient way to organize the data is to form a table, as shown on the next slide.

Data from Dropped-Ball Experiment Section 3 The Language of Physics Chapter 1 Data from Dropped-Ball Experiment A clear trend can be seen in the data. The more time that passes after each ball is dropped, the farther the ball falls.

Graph from Dropped-Ball Experiment Section 3 The Language of Physics Chapter 1 Graph from Dropped-Ball Experiment One method for analyzing the data is to construct a graph of the distance the balls have fallen versus the elapsed time since they were released. a The shape of the graph provides information about the relationship between time and distance.

Chapter 1 Physics Equations Section 3 The Language of Physics Chapter 1 Physics Equations Physicists use equations to describe measured or predicted relationships between physical quantities. Variables and other specific quantities are abbreviated with letters that are boldfaced or italicized. Units are abbreviated with regular letters, sometimes called roman letters. Two tools for evaluating physics equations are dimensional analysis and order-of-magnitude estimates.

Equation from Dropped-Ball Experiment Section 3 The Language of Physics Chapter 1 Equation from Dropped-Ball Experiment We can use the following equation to describe the relationship between the variables in the dropped-ball experiment: (change in position in meters) = 4.9  (time in seconds)2 With symbols, the word equation above can be written as follows: Dy = 4.9(Dt)2 The Greek letter D (delta) means “change in.” The abbreviation Dy indicates the vertical change in a ball’s position from its starting point, and Dt indicates the time elapsed. This equation allows you to reproduce the graph and make predictions about the change in position for any time.