CH. 7 Data Link Control. Requirements & Objectives of Data Link Control Frame Synchronization Flow Control Error Control Addressing Control and Data on.

Slides:



Advertisements
Similar presentations
William Stallings Data and Computer Communications 7th Edition
Advertisements

EE 4272Spring, 2003 Chapter 7 Data Link Control Objectives: Effective & reliable data communication between two directly connected transmitting-receiving.
Telecommunication Technologies
Data Link Protocols(HDLC & PPP). Data Link Protocols The set of specifications used to implement the DLL. DLL Protocols Synchronous Protocols Character-oriented.
HIGH-LEVEL DATA LINK CONTROL (HDLC) HDLC was defined by ISO for use on both point-to-point and multipoint data links. It supports full-duplex communication.
EIE325: Telecommunication TechnologiesMaciej J. Ogorza ł ek, PolyU, EIE Telecommunication Technologies Week 8 Flow Control Error Control.
William Stallings Data and Computer Communications 7th Edition
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 7 – Data Link Control Protocols.
Data and Computer Communications Updated: 2/9/2009.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 11 Data Link Control and Protocols.
Department of Electronic Engineering City University of Hong Kong EE3900 Computer Networks Data Link Control Slide 1 Data Link Control Chapter 7.
Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 7 – Data Link Control Protocols.
Piggybacking A method to combine a data frame with ACK. Station A and B both have data to send. Instead of sending separately, station A sends a data frame.
Chapter 7 – Data Link Control Protocols
Data Link Control Protocols Data link control protocol Provides a layer of control between systems on a transmission medium referred to as data link. DLC.
William Stallings Data and Computer Communications 7 th Edition Chapter 7 Data Link Control Protocols.
Chapter 9: Data Link Control Business Data Communications, 4e.
Semester EEE449 Computer Networks The Data Link Layer En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex, UK) Room.
Semester Copyright USM EEE442 Computer Networks The Data Link / Network Layer Functions: Flow Control and Error Control En. Mohd Nazri Mahmud.
Data Communications Data Link Control. What Is Data Link Control? The Data Link layer of a model typically has the following responsibilities: 1. Creates.
Example Data Link Protocols Quick review Reference Models? Layers? Flow Control? Bit stuffing? Connection Oriented? Synchronous transmission?
Data Link Protocols Asynchronous Protocols Synchronous Protocols
Gursharan Singh Tatla DATA LINK PROTOCOLS 24-Mar
Network Technology CSE Network Technology CSE3020 Week 6.
Data and Computer Communications Eighth & Ninth Edition by William Stallings Chapter 7 – Data Link Control Protocols.
Data Link Control Protocols
Data Link Control Protocols Dr. Muazzam A. Khan. Flow Control Ensuring the sending entity does not overwhelm the receiving entity —Preventing buffer overflow.
Aegis School of Telecommunication Chapter 7 Data Link Control Protocols Telecom Systems I by Dr. M. G. Sharma, Phd.
William Stallings Data and Computer Communications 7th Edition
Data and Computer Communications Ninth Edition by William Stallings Chapter 7 – Data Link Control Protocols Data and Computer Communications, Ninth Edition.
Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Data Link Control and Protocols.
Chapter 3 THE DATA LINK LAYER
1 Kyung Hee University Data Link Protocols. 2 Kyung Hee University 11 장 Data Link Control and Protocols 11.1 Flow and Error Control 11.2 Stop-and-Wait.
THE DATA LINK LAYER Chapter 3 1. H YBRID M ODEL The hybrid reference model to be used in this book. 2.
Chapter 11 Data Link Protocols A data link protocol is a set of specifications used to implement the data link layer [A protocol is the set of rules or.
Data Link and Flow Control Networks and Protocols Prepared by: TGK First Prepared on: Last Modified on: Quality checked by: Copyright 2009 Asia Pacific.
Eighth Edition by William Stallings Chapter 7 – Data Link Control Protocols Data Link Control Protocols need layer of logic above Physical to manage exchange.
Data Link Layer: Data Link Control : Data Communication and Computer Networks Asst. Prof. Chaiporn Jaikaeo, Ph.D.
CIS : Data Link Control. Flow Control Ensuring the sending entity does not overwhelm the receiving entity —Preventing buffer overflow Transmission.
CSCI 465 D ata Communications and Networks Lecture 10 Martin van Bommel CSCI 465 Data Communications & Networks 1.
FIT – Monash University High-Level Data Link Control
EEC4113 Data Communication & Multimedia System Chapter 4: Flow Control by Muhazam Mustapha, October 2011.
Chapter 11 Data Link Control and Protocols Flow and Error Control Flow Control Error Control.
Data and Computer Communications Data Link Control Protocols.
1 The Data Link Layer A. S. Tanenbaum Computer Networks W. Stallings Data and Computer Communications Chapter 3.
11.1 Chapter 11 Data Link Control Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 9: Data Link Control Business Data Communications, 4e.
Data and Computer Communications Data Link Control Protocols.
NETWORKING CONCEPTS. STOP AND WAIT FLOW CONTROL simplest form of flow control, After the destination entity receives the frame, it indicates its willingness.
Data Link Control Protocols  need layer of logic above Physical  to manage exchange of data over a link frame synchronization frame synchronization flow.
2.10 Flow and Error Control Before that ...
High level Data Link Layer Protocol - HDLC
HDLC and PPP.
Chapter 9: Data Link Control
William Stallings Data and Computer Communications 7th Edition
The Data Link Layer Supplementery Slides
Chapter 11 Data Link Control and Protocols
3.2 Data Link Layer : Error & Flow Control
ICSA 341 Data Communications & Networking
CIS 321 Data Communications & Networking
Chapter 10 Data Link Control
Chapter 11 Data Link Control and Protocols.
Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment. Error control.
Kendali Data Link dan Protokol
EEC4113 Data Communication & Multimedia System Chapter 4: Flow Control by Muhazam Mustapha, August 2010.
William Stallings Data and Computer Communications
Chapter 9: Data Link Control
Protocols and the TCP/IP Suite ECE405- Computer Networks
Presentation transcript:

CH. 7 Data Link Control

Requirements & Objectives of Data Link Control Frame Synchronization Flow Control Error Control Addressing Control and Data on Same Link Link Management

7.1 Flow Control Definition: –A technique for assuring that a transmitting station does not overwhelm a receiving station with data. Stop-and Wait Flow Control –The sender sends a frame and then waits until the receiver acknowledges the frame. –Works well for large blocks of data--but large blocks are usually broken into smaller blocks. –Does not always perform well for small blocks.

7.1 Flow Control (p.2) Characterization of Stop-and-Wait –Let B = length of the link in bits--the number of bits present on the link when a stream of bits fully occupies the link. –Let R =data rate of the link, in bps. –Let d = length, or distance, of the link in meters. –Let V = velocity of propagation, in meters/second. –Then B = R x d/V (Equation 7.1). –Variable a = B/L (Equation 7.2) –Utilization--Fig. 7.2

7.1 Flow Control (p.3) Example 7.1 Stop and Wait –a. Fiber Optic Link (d = 200 meters; R = 1 G bps; V = 2 x 10 8 meters/second; 1,000 bytes/frame) B =1,000 bits; L = 8,000 bits; t frame = 8  s. a = 1,000/8,000 =.125 < 1 (see Fig. 7.2b) Total Normalized Time a = 1.25 (10  s) –b. Satellite Relay Link ( d = 2 x 36,000 km; R = 1 M bps; V = 3 x 10 8 meters/second; 1,000 bytes/frame.) B =240,000 bits; L = 8,000 bits; t frame = 8ms. a =30 > 1 (see Fig. 7.2a) Total Normalized Time a = 61 (488 ms).

7.1 Flow Control (p.4) Sliding Window Flow Control (Fig.7.3 and 7.4) –Allows more than one frame to be sent at a time. –More than one frame may be acknowledged at a time. –Source A keeps a list of sequence numbers that are allowed to be sent. –Destination B maintains a list of sequence numbers that it is prepared to receive. –If k bit sequence numbers are used, frames are numbered modulo(2 k ) and maximum window size is 2 k -1.

7.1 Flow Control (p.5) Example 7.3 Sliding Window –a. Fiber Optic Link Time until ACK for 1st frame was 10  s. t frame was 8  s. A. window size of 2 would be all that is needed for transmission to be continuous. Note W =  Time until ACK/t frame  will be the maximum window needed for continuous transmission. –b. Satellite Link W =  488ms/8ms  =61 for continuous transmission. If W = 7 (3-bit window), sends 7 frames and must then wait for an ACK.

7.2 Error Control Two Types of Errors: lost and damaged frames. Elements of Error Control (ARQ) –Error Detection: use a CRC –Positive ACK Destination returns a positive ACK for error-free frames. –Retransmission after Timeout Source retransmits a frame that has not been acknowledged after a predetermined amount of time. –Negative ACK and Retransmission Destination returns a negative ACK for frames in which an error is detected; the source retransmits the frames.

7.3 Error Control (p.2) Stop-and Wait ARQ (Fig. 7.5) –Based on stop-and-wait flow control. –Source transmits a single frame and then must wait for an ACK. –If an error is detected a NAK could be sent. –If there is no response, then source times-out and resends the message. –To avoid duplications, 1 bit sequence number could be added to frame and or ACKs. –It is simple but sometimes inefficient.

7.3 Error Control (p.3) Go-back-N ARQ (Fig. 7.6a) –Source transmits multiple frames (sliding window) and then waits for ACK (RR). –Destination sends ACKs up to the last correct frame received. –One ACK can acknowledge several frames. –The error frame is retransmitted along with all subsequent frames. Selective-reject ARQ (Fig. 7.6b) –Only error frames are retransmitted.

7.3 High Level Data Link Control (HDLC) ISO 3309, ISO Three Types of Stations –Primary--has the responsibility for controlling the operation of the link. –Secondary--controlled by primary station. –Combination--combines features of primary and secondary

7.3 HDLC (p.2) Two Link Configurations –Unbalanced (Primaries and Secondaries) Used in point to point and multipoint operation. –Balanced (Combinations) Used only in point to point operation.

7.3 HDLC (p.3) Three Data Transfer Modes –Normal response mode (NRM): unbalanced configuration; poll and selection (used on multidrop lines). –Asynchronous balanced mode (ABM): balanced configuration; either combined station may initiate transmission (used on pt-to-pt lines). –Asynchronous response mode (ARM): unbalanced configuration; secondary may initiate transmission( rarely used).

7.3 HDLC (p.4) Frame Structure(Fig. 7.7) –Flag Field (8 bits) (Ox7E) Transparency is handled using bit- stuffing. Transmitter will stuff a 0 after 5 1's--see Fig –Address Field (One or more Octets) Used to identify secondary stations

7.4 HDLC (p.5) Frame Structure (cont.) –Control Field (8 or 16 bits) Information frames: carry data and ACKs. Supervisory frames: ACKs. Unnumbered frames : supplemental control. –Information Field (variable number of bits) –Frame Check Sequence Field (16 or 32 bits)

7.4 HDLC (p.6) HDLC Operations (Fig. 7.9) –Initialization, Data Transfer, Disconnect. –Table 7.1 Commands and Responses Reject supports "Go-Back-N". Selective Reject supports "Selective Reject". Receiver Not Ready, Receiver Ready –Used as ACKs and for flow control. Mode setting commands. Information transfer commands. Recovery commands. –Error types can be reported.